Cryptography: Basics & Applications

2013 JMU Cyber Defense Boot Camp

What is this unit about?

- Lecturing
 - "Boring" lecturing (practice in next session)
- A topic that has challenged the human kind for more than 2000 years
 - Dated beyond Julius Caesar (around 56 BC)
- Slides are available at https://users.cs.jmu.edu/tjadenbc/Bootcamp/3-crypto.pdf

Organization

- The data confidentiality problem
- Theory
 - Numbers
 - Encryption
 - Digital signature
 - Cryptographic hashing
 - Digital certificates and PKI
- Tie everything together: HTTPS

Focus on concepts;

Skip details

Road Map

- The data confidentiality problem
- Theory
 - Numbers
 - Encryption
 - Digital signature
 - Cryptographic hashing
 - Digital certificates and PKI
- Tie everything together: HTTPS

Questions

- How do you protect (the confidentiality of) your Turbo Tax file on your computer?
 - Full name, SSN, DOB, home address

- How do you protect the financial information on your computer?
 - Bank accounts, retirement plan accounts, stock investment accounts

Encrypt them?

What is encryption?

What the heck is Cryptography?

- We have heard "encryption" more
- Cryptography
 - Kryptos: hidden
 - -graphy
 - writing or representation in a (specified) manner or by a (specified) means or of a (specified) object
- Traditionally, cryptography = encryption

Welcome to the Wonderful Land

 Q: How many cryptographers does it take to change a light bulb?

• A: XIGHCBS

Road Map

The data confidentiality problem

Theory

- Numbers
- Encryption
- Digital signature
- Cryptographic hashing
- Digital certificates and PKI
- Tie everything together: HTTPS

Road Map

The data confidentiality problem

Theory

- Numbers
- Encryption
- Digital signature
- Cryptographic hashing
- Digital certificates and PKI
- Tie everything together: HTTPS

Warm-up Questions

•
$$2^3 = ?$$

•
$$2^4 = ?$$

•
$$2^3 < 10 < 2^4$$
?

•
$$\log_2 8 = ?$$

•
$$\log_2 16 = ?$$

•
$$\log_2 10 = ?$$

•
$$\log_2(10^6) = ?$$

•
$$\log_2(10^9) = ?$$

Back-of-Envelope Calculations

How many seconds are there in a day?

$$24 \times 60 \times 60 = 86,400 \text{ seconds}$$
In 2^{x} ?
 $\leq 2^{17}$

```
86400 = 2^{x}
8 \times 10^{4} \approx 2^{x}
\log_{2}(8 \times 10^{4}) \approx \log_{2}(2^{x})
\log_{2} 8 + \log_{2}(10^{4}) \approx x
3 + 4 \times \log_{2}(10) \approx x
x \approx 16.3
```

Back-of-Envelope Calculations

How many seconds are there in a day?

$$24 \times 60 \times 60 = 86,400 \text{ seconds}$$
In 2^{x} ?
 $\leq 2^{17}$
100 years $\approx 2^{32}$ seconds

• How many seconds are there in a year?

```
365 \text{ days} \times 86,400 = 31,536,000
\leq 2^{25}
```

How many seconds in 100 years?

```
3,153,600,000 \text{ seconds} = 3.1536 \times 10^9
 \approx 3.1536 \times 2^{30} < 2^{32}
```

Seconds in 2?

- 1 hour: $60 \times 60 = 3600$ seconds ($\leq 2^{12}$)
- 1 day: $24 \times 60 \times 60 = 86,400$ seconds ($\leq 2^{17}$)
- 1 month: 30 days \times 86,400 = 2592000 seconds (< 2^{22})
- 1 year: $365 \text{ days} \times 86,400 = 31,536,000 (< 2²⁵)$
- 100 years: 3,153,600,000 seconds = $3.1536 \times 10^9 \approx 3.1536 \times 2^{30} \le 2^{32}$

Back-of-Envelope Calculations

 How many "operations" can a computer do in one second?

Intel CPU

- Intel CPU: 3.45GHz
- $3.45 \times 10^9 Hz$
- Clock rate: 3.45×10⁹ times per second
- Assumption: 3.45×10⁹ basic operations per second
 \$3.45×10⁹ < 2³²;
- So in 100 years, this CPU can exhaust $2^{32} \times 2^{32} = 2^{64}$ basic operations

Nov. 14, 2012

- Fastest computer:
 - http://www.top500.org/
- DOE/SC/Oak Ridge National Laboratory
 - ❖ 17590.0 TFlop/s (17.59 PFLOPS)
 - $17.59 \times 10^{15} \approx 10^{16.24} \approx 2^{54}$ calculations per second
- 100 years $\approx 2^{32}$ seconds
- 100 year's calculations: $2^{54} \times 2^{32} = 2^{86}$

What if 1000000 Such Supercomputers?

- One supercomputer: $17.59 \times 10^{15} \approx 10^{16.24}$
- 1000000 (10⁶) such computers • 10^{22.64} calculations per second $\approx 2^{75.22}$
- 100 years: 2³² seconds
- 100 years' calculations = ?

```
2^{75.22} \times 2^{32} \le 2^{108}
```

What if 1 billion Such Supercomputers?

- One supercomputer: $17.59 \times 10^{15} \approx 10^{16.24}$ $\approx 2^{54}$ calculations per second
- 100000000 ($10^9 \approx 2^{29.9}$) such computers $2^{54} \times 2^{29.9} \approx 2^{84}$ calculations per second
- 100 years: 2³² seconds
- How many calculations in 100 years?

$$2^{84} \times 2^{32} \approx 2^{116}$$

Lessons?

Computers have computing limits

① Numbers (Intel CPU)

of seconds in a day?

 2^{17}

of seconds in a year?

2²⁵

of seconds in 100 years?

2³²

Intel CPU (3.45GHz) in 100 years?

2⁶⁴

• 1 million Intel CPU (3.45GHz) in 100 years: 286

1 billion Intel CPU (3.45GHz) in 100 years:

2⁹⁴

① Numbers (The Fastest Computer)

of seconds in a day?
 # of seconds in a year?
 # of seconds in 100 years?

• The fastest computer in 100 years?

• 1 million fastest computers in 100 years: 2108

• 1 billion fastest computers in 100 years: 2116

2013 Summer Camp

So?

A 128-bit string 01101010101...

- Randomly generated
- How many tries does it take to guess it
- correctly?
 - On average: 2¹²⁷
 - How long will it take for these tries?
 - One billion Intel CPU (3.45GHz)? 800 billion years
 - One billion fastest computers? 200 thousand years

Space

- 1K bytes
- 1M bytes
- 1G bytes
- 1Tera bytes (TB)
- 1Peta bytes (PB)
- 1 exabyte (EB)
- 1 zettabyte (ZB)
- 1 yottabyte (YB)

- 2¹⁰
- 2²⁰
- 2³⁰
- 2⁴⁰
- 2⁵⁰
- 260
- 2⁷⁰
- 2⁸⁰

4 terabytes = 2^{42}

120 PB (memory)

 $\approx 2^{57}$

NSA data center in Utah: 5 zettabytes (storage)

Passwords vs. a Strong Key

- Assume that password length = 8, how many passwords can we have?
 - The possible alphanumeric set size is (26 + 26 + 10 = 62), thus the possible combination size is $62^8 = 218340105584896 (\approx 2^{48})$
 - $\{`!@#$%^&*()^{'};,./:"<>?|{}[]\} = 90, thus the total combinations are at most 1278$

≈**2**⁵⁶

Roughly 4 seconds for the fastest computer

Road Map

The data confidentiality problem

Theory

- Numbers
- Encryption
- Digital signature
- Cryptographic hashing
- Digital certificates and PKI
- Tie everything together: HTTPS

Symmetric Key Encryption

Symmetric Key Encryption

After 2000 years, We Know How to

Personal Meetings?

2013 Summer Camp

Public Key Encryption (after 1970s)

2013 Summer Camp

Public Key Encryption

2013 Summer Camp

Algorithm Buzzwords

- Symmetric key encryption algorithms
 - Advanced EncryptionStandard (AES)
 - RC4 (Ron's Cipher 4)

- Public-key encryption algorithms
 - RSA: Rivest-Shamir-Adleman
 - Elliptic-curve encryption

Road Map

The data confidentiality problem

Theory

- Numbers
- Encryption
- Digital signature
- Cryptographic hashing
- Digital certificates and PKI
- Tie everything together: HTTPS

Signatures?

- Eat in a restaurant?
 - Sign your credit card payment
- Rent a house?
 - Sign the contract
- Get a car loan?
 - Sign the contract

Can we implement the concept of signature in the digital world?

Handwritten signatures can be copied: does **not** work well in the digital world

2013 Summer Camp

Bob

Public Key Encryption

We Know How to Implement Digital

Road Map

The data confidentiality problem

Theory

- Numbers
- Encryption
- Digital signature
- Cryptographic hashing
- Digital certificates and PKI
- Tie everything together: HTTPS

One-way?

- One-way roads
 - You are not supposed to go the other way
 - But you can (break the law)

One-way Cryptographic Function?

- A big file: 4G bytes, called *m*
- For any function $h, y \leftarrow h(m)$
- IF for some special function h, given any value y, it is hard (for you/anybody) to find x such that y = h(x)
 - h is called one-way function
 - You can try, but you won't be able to computationally (unlike one-way roads)
- Most functions are not one-way
- One-way functions are useful for information security

Example

SHA512 is a cryptographic hash function

Cryptographic Hash Function

- For function $h, y \leftarrow h(m)$
- If m is always much larger than y, h is a compression function
- Form some special compression function h, it is hard to find any pair (x, y), $x \neq y$, such that h(x) = h(y), h is called collision resistant
 - Not collision proof
- If h is both one-way and collision resistant, h is called a cryptography hash function

Example

SHA512 is a cryptographic hash function

Road Map

The data confidentiality problem

Theory

- Numbers
- Encryption
- Digital signature
- Cryptographic hashing
- Digital certificates and PKI
- Tie everything together: HTTPS

Read-only **paper** telephone Public Key Signature directory does not work well in the digital world! Alice's Alice's public key public key reliable ch Dear Bob Dear Bob Sell 20 Y/N? shares of my Sell 20 public channel Sign IBM stock Verify shares of my IBM **DIGITAL** stock **SIGNATURE** Alice's Bob private key Alice Dave

Digital Certificate (3/6)

• Questions:

- How to verify the authenticity of the signed message?
- What do you need to verify?

Digital Certificate (4/6)

- You need the signer's public key!
- What if you mistook a bad guy's public key as the signer's public key?

Digital Certificate (5/6)

 Why not digitally sign a public key before it is distributed?

 How to verify the authenticity of the digitally signed public key?

Digital Certificate (6/6)

Inside a Digital Certificate

Public Key Encryption

Quotes from Don Davis

- Q: How is a key-pair like a hand grenade?
- A: You get two parts, there's no aiming, & it's hard to use safely
- Q: How are they different?
- A: With a grenade, you throw the dangerous part away ...

Road Map

- The data confidentiality problem
- Theory
 - Numbers
 - Encryption
 - Digital signature
 - Cryptographic hashing
 - Digital certificates and PKI

Tie everything together: HTTPS

What is This?

63

Summary

- The data confidentiality problem
- Theory
 - Numbers
 - Encryption
 - Digital signature
 - Cryptographic hashing
 - Digital certificates and PKI
- Tie everything together: HTTPS