

CS 261
Fall 2025

Sharon Simmons, Professor

Structs and I/O

a b c x

Typedefs

● A typedef is a way to create a new type name
– Basically a synonym for another type
– Useful for shortening long types or providing more meaningful names
– Names are usually postfixed with "_t"

– Use the size_t typedef (defined to be the same as long unsigned
int in the stu headers) for non-negative sizes and counts

typedef unsigned char byte_t;

byte_t b1, b2;

const size_t STR_SIZE = 1024;

Structs

● A struct contains a group of related sub-variables
– New "kind" of type
– Similar to classes from Java, but without methods and everything is “public”
– Sub-variables are called fields
– Struct variables are declared with struct keyword

struct vertex {
double x;
double y;
bool visited;

};

double dist(struct vertex p1, struct vertex p2)
{
 return sqrt((p1.x-p2.x)*(p1.x-p2.x) +
 (p1.y-p2.y)*(p1.y-p2.y));
}

int main()
{
 struct vertex p1;
 p1.x = 4.2;
 p1.y = 5.6;
 p1.visited = false;
}

Typedef structs

● Convention: create a typedef name for struct types
– E.g., struct vertex -> vertex_t
– More concise and readable
– For projects, we'll provide structs and typedefs in headers

typedef struct vertex {
double x;
double y;
bool visited;

} vertex_t;

double dist(vertex_t p1, vertex_t p2)
{
 return sqrt((p1.x-p2.x)*(p1.x-p2.x) +
 (p1.y-p2.y)*(p1.y-p2.y));
}

int main()
{
 vertex_t p1;
 p1.x = 4.2;
 p1.y = 5.6;
 p1.visited = false;
}

Struct memory layout

● Fields are stored (mostly) contiguously in memory
– Each field has a fixed offset from the beginning of the struct

typedef struct vertex {
double x;
double y;
bool visited;

} vertex_t;

int main()
{
 vertex_t p1;
 p1.x = 4.2;
 p1.y = 5.6;
 p1.visited = false;
}

offset 0

struct vertexp1

Struct memory layout

● Fields are stored (mostly) contiguously in memory
– Each field has a fixed offset from the beginning of the struct

typedef struct vertex {
double x;
double y;
bool visited;

} vertex_t;

int main()
{
 vertex_t p1;
 p1.x = 4.2;
 p1.y = 5.6;
 p1.visited = false;
}

4.2

p1.xoffset 0

struct vertexp1

Struct memory layout

● Fields are stored (mostly) contiguously in memory
– Each field has a fixed offset from the beginning of the struct

typedef struct vertex {
double x;
double y;
bool visited;

} vertex_t;

int main()
{
 vertex_t p1;
 p1.x = 4.2;
 p1.y = 5.6;
 p1.visited = false;
}

4.2 5.6

p1.x p1.yoffset 0 offset 8

struct vertexp1

Struct memory layout

● Fields are stored (mostly) contiguously in memory
– Each field has a fixed offset from the beginning of the struct

typedef struct vertex {
double x;
double y;
bool visited;

} vertex_t;

int main()
{
 vertex_t p1;
 p1.x = 4.2;
 p1.y = 5.6;
 p1.visited = false;
}

4.2 5.6 0

p1

p1.x p1.y p1.visitedoffset 0 offset 8

offset 16struct vertex

Struct memory layout

● Given the following code, how much space will be
allocated for the "data" variable? Assume chars are one
byte each and ints are four bytes each.

– A) 4 bytes
– B) 7 bytes
– C) 8 bytes
– D) 16 bytes
– E) There is not enough information to know.

struct stuff {
 char a;
 char b;
 char c;
 int x;
} data;

Struct data alignment

● Alignment restrictions require addresses be n-divisible
– E.g., 4-byte alignment means field offsets must be divisible by 4
– Chosen by compiler based on hardware
– Improves memory performance
– Can be avoided in C using “attribute (packed)” (as in elf.h)

struct {
 int i;
 char c;
 int j;
} rec;

i c j

i c j

i c j

i c j

0 4 8 12 16 20 24

2-byte

4-byte

8-byte

None

Function parameters

● In C, parameters are passed by value
– Values are copied to a function-local variable at call time
– Local changes are not visible to the caller unless returned

● It is expensive to pass large structs by value
– Must copy the entire struct even if it is not all needed
– Alternative: pass variables by reference using a pointer
– Local changes through the pointer are visible to the caller
– Local changes to the pointer are not visible to the caller

● Parameters can be passed as const
– Shouldn't be changed by the function (checked by compiler)
– Useful for ensuring you don't accidentally overwrite a by-

reference parameter pointer

Struct pointers

● New "->" (arrow) operator dereferences a pointer to a struct
and accesses a field in that struct

vertex_t v;
vertex_t *vp = &v;
(*vp).x = 1.0; // set field "x"
vp->y = 2.0; // set field "y"

typedef struct vertex {
double x;
double y;
bool visited;

} vertex_t;

double dist(vertex_t *p1, vertex_t *p2)
{
 return sqrt((p1->x – p2->x) * (p1->x - p2->x) +
 (p1->y – p2->y) * (p1->y - p2->y));
}

Faster!
(copy 8-byte pointer instead of 17-byte struct)

Aside: Enums

● An enumeration is a type where all values are
listed
– Declared in C using enum keyword
– In C, the actual values are stored as integers
– Can assign integer values if desired
– Primary advantage: named constants

typedef enum {
MON = 1, TUE, WED, THU, FRI, SAT, SUN

} day_t;

// essentially the same as: int midterm_day = 3;
day_t midterm_day = WED;

Aside: Unions

● A union is also a variable that can store data of different
types
– One “thing”, but it could be multiple sizes depending on what kind

of “thing” it currently is (so context is even more important!)
– All “fields” start at offset zero
– Generally a bad idea! (circumvents the type system in C)
– Can be used to do OOP in C (i.e., polymorphism)

typedef enum { CHAR, INT, FLOAT } objtype_t;

typedef struct {
 objtype_t type;
 union {
 char c;
 int i;
 float f;
 } data;
} obj_t;

obj_t foo;

foo.type = INT;
foo.data.i = 65;

printf(“%c”, foo.data.c); ← VALID!

65INT

foo.type

offset 0 offset 8

obj_tfoo

foo.data.c

foo.data.i
foo.data.f

offset 4

File I/O

● C standard library provides opaque file stream handles:
FILE*
– Internal representation is implementation-dependent

● File manipulation functions:
– Open a file: fopen

● Mode: read (‘r’), write (‘w’), append (‘a’)
– Read a character: fgetc
– Read a line of text: fgets
– Read binary data: fread
– Set current file position: fseek
– Write formatted text: fprintf
– Write binary data: fwrite
– Close a file: fclose

These are all documented
in the function reference
(on website)

Standard I/O

● Standard "file" streams: stdin, stdout, stderr (type is FILE*)
– Like System.in, System.out, and System.err in Java
– Available to all programs; no need to open or close
– Flushed when newline (‘\n’) encountered (included by fgets!)
– Use CTRL-D to indicate end-of-file when typing input from the terminal

● Formatted input/output (scanf / printf)
– Variable number of arguments (varargs)
– Format string and type specifiers:

● %d for signed int, %u for unsigned int
● %c for chars, %s for C strings (char *, passing NULL is undefined behavior)
● %f or %e for float, %x for hex, %p for pointer
● Prepend ‘l’ for long or ‘ll’ for long long (e.g., %lx = long hex)
● Include number for fixed-width field (e.g., %20s for a 20-character field)
● Many more useful options; see documentation for details

Standard I/O

● What is wrong with the following code?

– A) The buffer is not initialized before calling fgets.
– B) The buffer is the wrong size.
– C) The buffer size parameter is wrong.
– D) The call to fgets has too few parameters.
– E) There is nothing wrong with this code.

char buffer[20];

fgets(buffer, 30, stdin);

Security issues

● Input: beware of buffer overruns
– Like carelessly copying strings, reading input improperly is a

common source of security vulnerabilities
– Best practice: declare a fixed-size buffer and use “safe” input

functions (e.g., fgets)
– You may NOT use unsafe functions in this course! (e.g., gets)
– Here is a partial list of unsafe functions; see function reference on

website for complete list

UNSAFE Safer alternative

atoi strtol
atof strtod
gets fgets
strcat strncat
strcpy snprintf

Be careful with code that
you find online—never
use code that you don't
fully understand or that
you haven’t verified to be
safe.

Projects

● You are now a C programmer!
– We have now covered all topics necessary for P0 and

P1
– There is certainly more to learn about C, but we have

covered all the necessary topics for this course
– References and resources on our website
– Next time, we’ll cover a few more useful things and

some technicalities that we’ve glossed over
– Now all you need is practice :)

Exercise

● Let's write a simple version of the 'cat' utility
– Copy all text from standard in to standard out

● No need to open/close a “real” file
– Handle a line at a time

● To reduce memory requirements
– What is the basic form of our code?

● What variable(s) will we need?

Simple “cat” program

#include <stdio.h>

int main (int argc, char **argv)
{
 const int BUF_SIZE = 1024;
 char buffer[BUF_SIZE];

 while () {
 printf("%s", buffer);
 }

 return 0;
} CS 261 C function reference:

https://w3.cs.jmu.edu/simmonsj/cs261/c_funcs.html

https://w3.cs.jmu.edu/simmonsj/cs261/c_funcs.html

Documentation

the 'restrict' keyword means "this is the only active pointer to this variable"

Simple “cat” program

#include <stdio.h>

int main (int argc, char **argv)
{
 const int BUF_SIZE = 1024;
 char buffer[BUF_SIZE];

 while () {
 printf("%s", buffer);
 }

 return 0;
}

Simple “cat” program

#include <stdio.h>

int main (int argc, char **argv)
{
 const int BUF_SIZE = 1024;
 char buffer[BUF_SIZE];

 while (fgets(, ,) != NULL) {
 printf("%s", buffer);
 }

 return 0;
}

Simple “cat” program

#include <stdio.h>

int main (int argc, char **argv)
{
 const int BUF_SIZE = 1024;
 char buffer[BUF_SIZE];

 while (fgets(buffer, ,) != NULL) {
 printf("%s", buffer);
 }

 return 0;
}

Simple “cat” program

#include <stdio.h>

int main (int argc, char **argv)
{
 const int BUF_SIZE = 1024;
 char buffer[BUF_SIZE];

 while (fgets(buffer, BUF_SIZE,) != NULL) {
 printf("%s", buffer);
 }

 return 0;
}

Simple “cat” program

#include <stdio.h>

int main (int argc, char **argv)
{
 const int BUF_SIZE = 1024;
 char buffer[BUF_SIZE];

 while (fgets(buffer, BUF_SIZE, stdin) != NULL) {
 printf("%s", buffer);
 }

 return 0;
}

Exercise
● Write a program that reverses every line from standard in (stdin)

– Reminder: to compile your program (after creating rev.c):

gcc -o rev rev.c
– To test your program (after creating input.txt):

./rev <input.txt (or just ./rev and type text followed by CTRL-D)

Sample input:

Hello, world!
My name is Bob.

ENOD

Sample output:

!dlrow ,olleH
.boB si eman yM

DONE

Hint: use fgets() to read the
input a line at a time into a char
array, printing the characters in
reverse after reading each line

char* fgets (char *str, int count, FILE *stream)
Read a line of text input from a file (returns str, count is max chars)

size_t strlen (char *str)
Calculate the length of a null-terminated string

http://en.cppreference.com/w/c/io/fgets
http://en.cppreference.com/w/c/string/byte/strlen

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

