

CS 261
Fall 2025

Sharon Simmons, Professor

C Introduction
Comparison w/ Java, Memory Model, and Pointers

https://xkcd.com/138/

The C Language

● Systems language originally developed for Unix
● Imperative, compiled language with static typing
● “High level” at the time; now considered low-level
● Allows “direct” access to memory (subject to

architecture)
● Many compilers and standards: we’ll use GNU and C99

Ken Thompson
(inventor of B language

and Unix)

Dennis Ritchie
(inventor of C language
and coauthor of C book)

Brian Kernighan
(coauthor of C book and

contributor to Unix/C)

Review: Compilation

usually combined

Review: Makefiles

● The compilation process is usually streamlined
using a build system (we'll use Make)

● Provide a “Makefile” that contains targets,
dependencies, and build commands

● Example Makefile:

hello: hello.c
 gcc -g -O0 -o hello hello.c

target dependency

build command

Hello, World

● How is this different from Java?

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

Similarities to Java

● Semicolons!
● Comments (both // and /* */ styles)
● Basic types: int, char, float, double

– Char is just a number
● Blocks w/ curly braces
● Loops: do, while, for
● Switch statements

– Parameter must be integer
● Function definitions

Differences from Java

● Preprocessor macros (#include, #define)
● Functions must be declared before use

– New distinction: declaration vs. definition
– Interface (.h) vs implementation (.c)

● Fewer built-in types
– Booleans are “bool” (not built-in; must include stdbool.h)

● Actually integers: 0 is “false”, anything else is “true”
– No built-in string type (C strings are just arrays of chars)

● No classes, packages, or built-in exceptions
● Different I/O functions: printf, fgets, scanf (in stdio.h)

– For printf, embed variables in output using formatting codes
– E.g., use "%d" to embed an integer (see documentation for more

codes)

Variables in C

● Declared by type and name like in Java
– Can be initialized when declared (this is recommended!)
– E.g., int file_counter = 0;
– If not initialized, contents are undefined until assigned
– Can be declared ‘const’

● Read-only, similar to ‘final’ in Java—must be initialized!

● Multiple declarations per line are allowed
– E.g., int x, y;
– E.g., int x = 0, y = 1;
– Mixed-initialization and multiple declarations is not

recommended
● E.g., int x, y = 1; // only initializes y!

C data types

● Integer types: char and int
– Can be signed (default) or unsigned
– short, long, and long long modifiers for int

● Real types: float and double
– Floating-point representation

Data type Size on stu (bytes)

char / bool 1

short int 2

int 4

long int / long long int 8

float 4

double 8

1 byte = 8 bits

Explicit-width integer types

● C standard doesn't mandate integer widths
– It only specifies a minimum
– This causes problems when different architectures or

compilers provide different actual sizes

● More portable alternative: stdint.h types
– Basic format: XintY_t
– X can be empty (signed) or 'u' (unsigned)
– Y can be 8, 16, 32, or 64 (bits)
– Examples: int8_t, uint8_t, int32_t, uint64_t

Variable attributes (CS 430 preview)

● Name
● Value
● Type
● Address
● Scope
● Lifetime

Variable attributes (CS 430 preview)

● Name: identifier used to refer to the variable in code
● Value: current contents of a variable
● Type: range of values a variable can store
● Address: location of variable’s value

– Most common locations: register, stack, heap, or static data
– We’ll focus on the non-register locations for now

● Scope: code range where a variable is visible
– Global: visible anywhere in file (code module)
– Local: visible only inside a function or block

● Lifetime: time period when variable access is valid
– Static: allocated when program starts; de-allocated on exit
– Dynamic: allocated and de-allocated while program runs

Aside: Enums

● An enumeration is a type where all values are
listed
– Declared in C using enum keyword
– In C, the actual values are stored as integers
– Can assign integer values if desired
– Primary advantage: named constants

typedef enum {
MON = 1, TUE, WED, THU, FRI, SAT, SUN

} day_t;

// essentially the same as: int midterm_day = 3;
day_t midterm_day = WED;

Memory management

● The fundamental difference between C and Java is how
they handle memory
– Java is a managed language, where the compiler and

runtime handle memory management for the programmer
and direct access to memory is difficult or impossible

– C is not a managed language, meaning we can directly
access and manipulate memory using arbitrary addresses

– This makes it possible to do the kind of low-level
experimentation we want to do in CS 261, and it also
enables optimizations that are not possible using Java

– However, it is also far more dangerous!

“With great power comes great responsibility.”

Pointers

● A pointer is a variable that contains a memory address
● Type modifier: “*” indicates one level of pointer

– int *p;
– int **p; // yes, this works

● Often initialized using the “&” operator (“address of”)
– int x;
– p = &x;

● Dereferenced with “*” operator (“follow the pointer”)
– *p = 7;

● Set a pointer to NULL to mark them as invalid
● C does NOT check pointers before dereferencing them!

– int *p = NULL; *p = 123; // this will segfault!

Types

● Pointers are variables, so they have a type
– The type describes what kind of data it points to
– An int has type int
– A pointer to an int has type int*
– A pointer to a pointer to an int has type int**

● Expressions also have a type
– If x has type int, then x+4 also has type int
– If x has type int, then &x has type int*
– If p has type int*, then *p has type int
– If p has type int*, then &p has type int**

What will this C code print?

 int a = 42;

 int b = 7;

 int c = 999;

 int *t = &a;

 int *u = NULL;

 printf("%d %d\n", a, *t);

 c = b;

 u = t;

 printf("%d %d\n", c, *u);

 a = 8;

 b = 9;

 printf("%d %d %d %d\n", b, c, *t, *u);

 *t = 123;

 printf("%d %d %d %d %d\n", a, b, c, *t, *u);

Question

● What does the following C code do?
int* c, d;

– A) Declares two integers “c” and “d”
– B) Declares two integer pointers “c” and “d”
– C) Declares one integer pointer “c” and one integer “d”
– D) Declares one integer “c” and one integer pointer “d”
– E) The behavior is undefined

Pointer declaration caveat

● The following code doesn't do what you think it
does:
– int* c, d;

● Recommendation: put asterisk next to variable
names in declarations
– int *c, *d;
– Or declare only one variable per line!

● Exception: function declarations (since there can
only be one return value)
– int* myfunc();

C/Linux memory model

0

static code

static data

heap

stack

400000

601000

(randomized)

≈ 7fff00000000

(randomized)

≈ 1000000

local variables

global variables &
'static' local variables

dynamically-
allocated memory

● Every process has its own virtual
private memory called an address
space.

● The address space is divided into
regions. Some regions are static
and do not change size while the
process runs, while others are
dynamic, changing size if
necessary.

● The stack region expands when a
function is called and shrinks when
a function returns. The heap region
expands when malloc() is called.

● Some regions begin at a
randomized location (different on
every run) for security reasons.

Dynamic memory allocation

● If you do not know how much memory you need until after
the program is running, you must allocate memory on the
heap

● Allocate with malloc() function (or calloc)
– Pass it the number of bytes you need
– Often calculated using the sizeof operator
– Returns a pointer to the beginning of the allocated region

● De-allocate with free() when you are done
– Pass it a pointer to the beginning of the region you want to free
– Good code practice: set pointer to NULL afterwards
– Neglecting to free memory will result in a memory leak when the

reference is no longer valid (e.g., the pointer goes out of scope)

Variable summary

● Global variables
– Static data address, global scope, static lifetime

● Local variables (regular)
– Stack address, local scope, dynamic lifetime
– Valid while the function executes

● Local variables declared ‘static’
– Static data address, local scope, static lifetime
– Similar to global variable but with local scope

● Dynamically-allocated memory
– Heap address, local scope (via pointer), dynamic lifetime
– Valid from malloc until free
– Pointer(s) themselves are usually local variables (see

above)

Memory model example

int global_var;

void foo()

{

 static int foo_st_var;

 int foo_var;

}

int main()

{

 int main_var;

 int *malloc_var = (int*)malloc(sizeof(int));

 foo();

 return 0;

}

For each of the following
variables, classify their
address as static, stack, or
heap:

● global_var
● foo_st_var
● foo_var
● main_var
● malloc_var
● *malloc_var

Does this program leak
memory? If so, where,
and how would you fix it?

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

