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The C Language

● Systems language originally developed for Unix
● Imperative, compiled language with static typing
● “High level” at the time; now considered low-level
● Allows “direct” access to memory (subject to 

architecture)
● Many compilers and standards: we’ll use GNU and C99

Ken Thompson
(inventor of B language 

and Unix)

Dennis Ritchie
(inventor of C language 
and coauthor of C book)

Brian Kernighan
(coauthor of C book and 

contributor to Unix/C)



  

Review: Compilation

usually combined



  

Review: Makefiles

● The compilation process is usually streamlined 
using a build system (we'll use Make)

● Provide a “Makefile” that contains targets, 
dependencies, and build commands

● Example Makefile:

hello: hello.c
       gcc -g -O0 -o hello hello.c

target dependency

build command



  

Hello, World

● How is this different from Java?

#include <stdio.h>

int main()
{
    printf("Hello, world!\n");
    return 0;
}



  

Similarities to Java

● Semicolons!
● Comments (both // and /* */ styles)
● Basic types: int, char, float, double

– Char is just a number
● Blocks w/ curly braces
● Loops: do, while, for
● Switch statements

– Parameter must be integer
● Function definitions



  

Differences from Java

● Preprocessor macros (#include, #define)
● Functions must be declared before use

– New distinction: declaration vs. definition
– Interface (.h) vs implementation (.c)

● Fewer built-in types
– Booleans are “bool” (not built-in; must include stdbool.h)

● Actually integers: 0 is “false”, anything else is “true”
– No built-in string type (C strings are just arrays of chars)

● No classes, packages, or built-in exceptions
● Different I/O functions: printf, fgets, scanf (in stdio.h)

– For printf, embed variables in output using formatting codes
– E.g., use "%d" to embed an integer (see documentation for more 

codes)



  

Variables in C

● Declared by type and name like in Java
– Can be initialized when declared (this is recommended!)
– E.g.,  int file_counter = 0;
– If not initialized, contents are undefined until assigned
– Can be declared ‘const’

● Read-only, similar to ‘final’ in Java—must be initialized!

● Multiple declarations per line are allowed
– E.g., int x, y;
– E.g., int x = 0, y = 1;
– Mixed-initialization and multiple declarations is not 

recommended
● E.g., int x, y = 1;  // only initializes y!



  

C data types

● Integer types: char and int
– Can be signed (default) or unsigned
– short, long, and long long modifiers for int

● Real types: float and double
– Floating-point representation

Data type Size on stu (bytes)

char / bool 1

short int 2

int 4

long int / long long int 8

float 4

double 8

1 byte = 8 bits



  

Explicit-width integer types 

● C standard doesn't mandate integer widths
– It only specifies a minimum
– This causes problems when different architectures or 

compilers provide different actual sizes

● More portable alternative: stdint.h types
– Basic format: XintY_t
– X can be empty (signed) or 'u' (unsigned)
– Y can be 8, 16, 32, or 64 (bits)
– Examples: int8_t, uint8_t, int32_t, uint64_t



  

Variable attributes  (CS 430 preview)

● Name
● Value
● Type
● Address
● Scope
● Lifetime



  

Variable attributes  (CS 430 preview)

● Name: identifier used to refer to the variable in code
● Value: current contents of a variable
● Type: range of values a variable can store
● Address: location of variable’s value

– Most common locations: register, stack, heap, or static data
– We’ll focus on the non-register locations for now

● Scope: code range where a variable is visible
– Global: visible anywhere in file (code module)
– Local: visible only inside a function or block

● Lifetime: time period when variable access is valid
– Static: allocated when program starts; de-allocated on exit
– Dynamic: allocated and de-allocated while program runs



  

Aside: Enums

● An enumeration is a type where all values are 
listed
– Declared in C using enum keyword
– In C, the actual values are stored as integers
– Can assign integer values if desired
– Primary advantage: named constants

typedef enum {
MON = 1, TUE, WED, THU, FRI, SAT, SUN

} day_t;

// essentially the same as: int midterm_day = 3;
day_t midterm_day = WED;



  

Memory management

● The fundamental difference between C and Java is how 
they handle memory
– Java is a managed language, where the compiler and 

runtime handle memory management for the programmer 
and direct access to memory is difficult or impossible

– C is not a managed language, meaning we can directly 
access and manipulate memory using arbitrary addresses

– This makes it possible to do the kind of low-level 
experimentation we want to do in CS 261, and it also 
enables optimizations that are not possible using Java

– However, it is also far more dangerous!

“With great power comes great responsibility.”



  

Pointers

● A pointer is a variable that contains a memory address
● Type modifier: “*” indicates one level of pointer

– int *p;
– int **p;    // yes, this works

● Often initialized using the “&” operator (“address of”)
– int x;
– p = &x;

● Dereferenced with “*” operator (“follow the pointer”)
– *p = 7;

● Set a pointer to NULL to mark them as invalid
● C does NOT check pointers before dereferencing them!

– int *p = NULL; *p = 123;   // this will segfault!



  

Types

● Pointers are variables, so they have a type
– The type describes what kind of data it points to
– An int has type int
– A pointer to an int has type int*
– A pointer to a pointer to an int has type int**

● Expressions also have a type
– If x has type int, then x+4 also has type int
– If x has type int, then &x has type int*
– If p has type int*, then *p has type int
– If p has type int*, then &p has type int**



  

What will this C code print?

    int a = 42;

    int b = 7;

    int c = 999;

    int *t = &a;

    int *u = NULL;

    printf("%d %d\n", a, *t);

    c = b;

    u = t;

    printf("%d %d\n", c, *u);

    a = 8;

    b = 9;

    printf("%d %d %d %d\n", b, c, *t, *u);

    *t = 123;

    printf("%d %d %d %d %d\n", a, b, c, *t, *u);



  

Question

● What does the following C code do?
int* c, d;

– A) Declares two integers “c” and “d”
– B) Declares two integer pointers “c” and “d”
– C) Declares one integer pointer “c” and one integer “d”
– D) Declares one integer “c” and one integer pointer “d”
– E) The behavior is undefined



  

Pointer declaration caveat

● The following code doesn't do what you think it 
does:
– int* c, d;

● Recommendation: put asterisk next to variable 
names in declarations
– int *c, *d;
– Or declare only one variable per line!

● Exception: function declarations (since there can 
only be one return value)
– int* myfunc();



  

C/Linux memory model

0

static code

static data

heap

stack

400000

601000

(randomized)

≈ 7fff00000000

(randomized)

≈ 1000000

local variables

global variables & 
'static' local variables

dynamically-
allocated memory

● Every process has its own virtual 
private memory called an address 
space.

● The address space is divided into 
regions. Some regions are static 
and do not change size while the 
process runs, while others are 
dynamic, changing size if 
necessary.

● The stack region expands when a 
function is called and shrinks when 
a function returns. The heap region 
expands when malloc() is called.

● Some regions begin at a 
randomized location (different on 
every run) for security reasons.



  

Dynamic memory allocation

● If you do not know how much memory you need until after 
the program is running, you must allocate memory on the 
heap

● Allocate with malloc() function (or calloc)
– Pass it the number of bytes you need
– Often calculated using the sizeof operator
– Returns a pointer to the beginning of the allocated region

● De-allocate with free() when you are done
– Pass it a pointer to the beginning of the region you want to free
– Good code practice: set pointer to NULL afterwards
– Neglecting to free memory will result in a memory leak when the 

reference is no longer valid (e.g., the pointer goes out of scope)



  

Variable summary

● Global variables
– Static data address, global scope, static lifetime

● Local variables (regular)
– Stack address, local scope, dynamic lifetime
– Valid while the function executes

● Local variables declared ‘static’
– Static data address, local scope, static lifetime
– Similar to global variable but with local scope

● Dynamically-allocated memory
– Heap address, local scope (via pointer), dynamic lifetime
– Valid from malloc until free
– Pointer(s) themselves are usually local variables (see 

above)



  

Memory model example

int global_var;

void foo()

{

    static int foo_st_var;

    int foo_var;

}

int main()

{

    int main_var;

    int *malloc_var = (int*)malloc(sizeof(int));

    foo();

    return 0;

}

For each of the following 
variables, classify their
address as static, stack, or
heap:

● global_var
● foo_st_var
● foo_var
● main_var
● malloc_var
● *malloc_var

Does this program leak 
memory? If so, where, 
and how would you fix it?
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