Defining Functions

Python programs typically have multiple functions, each of which has multiple statements.
Defining new functions allows you to break down a complex program into smaller blocks of

reusable code.
This activity uses Python Tutor (by Philip Guo) to visualize the flow of execution. Each unit is
interactive—to encourage discussion, have only one student per team run the visualization.

At the end of, explain the difference between parameters and arguments.
Remember None is a built-in constant like and

Unit1 Flow of Execution

In addition to using Python’s built-in functions (e.g., print, abs) and functions defined in other
modules (e.g., math.sqrt), you can write your own functions.

model_one() :

word = input("Enter a word: ")
L = len(word)

ans = word * L

print (ans)

main():

print("Starting main...")

model_one ()
print("All done!")

main()

Questions

1. Based on the program in Unit 1:
a) What is the Python keyword for defining a function?
b) On what line is the model_one function... defined? called?

¢) On what line is the main function... defined? called?

2. Open a web browser and go to PythonTutor.com. Click on “Visualize your code”, and type
(or paste) the program above. Make sure the line numbers match.

3. Click the “Visualize Execution” button. As you step through the program, pay attention to
what is happening on the left side of the visualization.

http://pythontutor.com/

a) What does the red arrow indicate?

b) What does the green arrow indicate?

4. Notice the order in which the program runs:

a) After line 12 of the program executes (Step 3), what is the next line that executes?

b) After line 9 of the program executes (Step 6), what is the next line that executes?

5. In terms of execution order, what is the effect of calling a function?

6. Consider the definition for a function called str_to_list that prompts the user to enter a
word. The function converts the string to a list and print the list.
str_to_list():
word = ()
ans = (word)
(ans)

Edit the program in Python Tutor so that, instead of defining and calling the function model_one,

it defines and calls the function str_to_list. Verify your changes by visualizing the execution,
and draw a picture of the right side immediately after the list is printed.

Unit2 Passing Arguments

Instead of using input inside a function to get data, we can define a function to take a parameter
(variable). When we call the function, we need to provide an argument (value). Change the
program in Python Tutor as follows:

model_two (word) :

ans = word * len(word)
print(ans)

main():

print("Starting main...")
w = input("Enter a word: ")

model_two (w)
print("All done!")

main()

Questions

7. Underline the parameter in the model_two function definition, then circle each use of the
parameter inside the function.

8. Find the model_two function call in main, and underline the argument being passed by the
function call.

9. Visualize the execution of model_two until Step 8.

a) How does the frame for model_two at this point in the execution differ from the frame for
model_one previously?

b) Write the implied assignment statement to show how the parameter word gets its value.

c) When a variable is used as an argument, does the name of the variable need to be the
same as the parameter variable name?

10. Assume thatsl = "Hi" and s2 = "ya". In the function call model_two (sl + s2):
a) What is the argument for the function call?
b) Write the implied assignment statement that happens during the call.
c) What will be the value of parameter word when model_two begins executing?

d) Predict the output that will be produced by the function call.

11. Review the two implied assignment statements that you have written. What exactly gets
“passed” when you call a function?

12. Change model_two so that, instead of multiplying word by the length of word, it will mul-
tiply by an integer passed as the second argument to the function. Write the new version of
model_two in the space below. Use times for the name of the new integer parameter.

13. How does the call to model_two in main need to change so that it matches the new function
definition? Give an example.

Unit3 Returning Values

Functions may optionally send a value back to the calling function using a statement.
Change the program in Python Tutor as follows:

model_three(word) :
ans = word * len(word)
ans

main() :

print("Starting main...")
w = input("Enter a word: ")
result = model_three(w)
print (result)

print("All done!")

main()

Questions

14. Step through the execution of this code. In general, what value will be returned by
model_three?

15. Edit model_three and delete the return statement at the end of the function. Visualize the
execution. What value is returned by a function when there is no return statement?

16. Edit model_three again, and add the return statement back to the end of the function. Then
change line 8 so that model_three is still called but there is no assignment to result. What do
you predict will happen in main after the model_three function call completes?

17. Why is a function that returns the value of a variable more useful than a function that
simply prints the value of that variable?

	Flow of Execution
	Passing Arguments
	Returning Values

