
might be warned of situations or dilemmas that could
eventually lead to unethical behavior, such as “Avoid
harm to others.”

A joint ACM/IEEE-CS task force has created a code of
ethics for addressing issues of unethical behavior (www.
nspe.org/Ethics/index.html). But too often the focus is on
headline scenarios and not on the (initially) mundane
situations that abound in our profession. Further, ethical
training might not be given the needed emphasis during
undergraduate education.2-4

Rather than an isolated ethical lapse, what typically
makes the headlines is the result of a sequence of related
ethical lapses. When such scenarios cascade, there tends
to be a magnification effect.

An ethical dilemma occurs in software engineering
when the professional must make a choice between com-
peting values, such as personal versus professional. For
example, a sales manager might sign a contract to deliver
a software product knowing, or having been advised, that
the product will take longer to deliver than the promised
date. The sales manager’s dilemma might be that his em-
ployer is under pressure to meet a financial target, or there
might be job-related consequences.

H
umans have been engineering things for
hundreds of years, and for all that time they
have faced essentially the same ethical chal-
lenges we have outlined elsewhere. So what
makes software engineering significantly

different? Software engineering is a discipline with
which many people are unfamiliar and where issues
and problems are harder to spot in advance. Therefore,
people must trust software engineering experts even
more than experts in other fields of engineering.

Software engineers often engage in unprofessional or
unethical behavior without realizing it.1 In ethics courses,
or through professional association codes, practitioners

Brian Berenbach, Siemens Corporate Research

Manfred Broy, Technical University of Munich

The authors identify, categorize, and
name nine specific ethical and professional
dilemmas in software engineering, placing
them in the context of the IEEE code of
conduct, with the hope that giving such
behavior a name will increase awareness
and decrease the frequency with which
these dilemmas occur.

computer	74

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$25.00 © 2009 IEEE	

Professional and
Ethical Dilemmas in
Software Engineering

In response, the project manager creates an unrealistic
project schedule, which lead development staff choose to
defer to so that they can achieve political or organizational
goals. A chain of unethical or unprofessional behaviors
could then take place that eventually leads to massive pen-
alty payments, lawsuits, layoffs, or even bankruptcy. Yet
none of the players in this process will admit to or recog-
nize that their behavior was unethical or unprofessional.

CATEGORIZING DILEMMAS
To shine some light on these kinds of subtle but none-

theless unethical or unprofessional situations, we have
given each dilemma a name. Readers might disagree with
our choice of labels, but we doubt they will disagree that
the behavior is inappropriate.

This list is not and cannot be comprehensive. We cover
the most significant instances of ethical dilemmas. All
those we describe involve common occurrences. We
cannot be sure that simply naming them will solve any-
thing, but it will help us discuss them.

Keep in mind that not every wrong behavior is unethi-
cal. If people do not know better and behave wrongly,
they are not acting unethically. It certainly is unethical,
however, for people to make decisions when they know
they lack the knowledge needed to make sound profes-
sional decisions.

The term ethical behavior refers to how an individual or
an organization ensures that all its decisions, actions, and
stakeholder interactions conform to the individual’s or orga-
nization’s moral and professional principles. These principles
should support all applicable laws and regulations and are
the foundation for the individual’s or organization’s culture
and values. They define right from wrong.

Typically, incompetence, unprofessional behavior, per-
sonal misconduct, mismanagement or, more commonly,
a seemingly inconsequential chain of small ethical or
professional lapses brings about the situations that make
headlines.

For example, if a project is running late, the project
manager might be tempted to cut short the requirements
definition phase, hoping to make up for some lost time. In
order to get the product out the door, developers base their
testing not on the requirements, but on developer descrip-
tions of how their code will work. The team then delivers
the result to the customer with possibly catastrophic
consequences, such as an unusable product, contract can-
cellation, or lawsuits.

This behavior is shortsighted at best and certainly
unprofessional. Wrong decisions lead to bad results. If a
person who should know better makes wrong decisions,
and if personal interests motivated those decisions, the
behavior becomes unethical.

When students enroll in introductory ethics courses,
they learn about clear and extreme situations. This en-
vironment makes it relatively easy to distinguish when
behavior crosses the line or is unethical. However, real life
is not so simple, and the following dilemmas come from
scenarios that occur all too frequently.

Mission impossible
This dilemma occurs when an individual is asked to

create or accept a schedule that is obviously impossible to
meet. Because of perceived pressure, or for other reasons,
the person creates or accepts the schedule knowing it is
unrealistic.

The consequences of this lapse in judgment can range
from loss of qualified staff to significant loss of revenue.
Overwork and burnout cause loss of staff. Loss of rev-
enue can derive from the premature announcement of a
product’s availability, which then reaches the marketplace
later than anticipated. Meanwhile, customers stop buying
the current product in anticipation of the new product’s
arrival.

Mea culpa
This dilemma occurs when staff members must deliver

a product that still lacks key functionality or has known
software defects. The market’s anticipation can create
pressure to release the product prematurely, before a com-
petitor does or before contractual obligations—possibly
associated with a penalty clause—come due.

A risk assessment is worthwhile and might reveal that,
under certain circumstances, releasing early could be ben-
eficial. However, problems might arise if no one performs
a risk assessment or the actual risks prove much greater
than perceived.

In the short term, delivering incomplete software
products causes customer dissatisfaction. Long-term re-
percussions might include a bad reputation and loss of
market share or sales. If incomplete deliveries happen
often enough, the company could go out of business. In a
worst-case scenario, company staff could be exposed to
civil or criminal penalties.

The mea culpa dilemma occurs when
staff members must deliver a product
that still lacks key functionality or has
known software defects.

75JANUARY 2009

Rush job
Occasions can arise in which either a poor work ethic

or perceived pressure to deliver compromises quality. A
developer working on a software product delivers work-
ing code, but the quality of the product is shoddy, with
minimal or no rationale and little or no documentation.
The programmer might feel under pressure to deliver, be-
coming more concerned about meeting milestones than
ensuring quality.

The rush job and mea culpa dilemmas differ markedly.
In the mea culpa mode developers still deliver a product,
although one missing functionality. However, in the rush
job scenario, full functionality can be present, but the
resulting low-quality product does not meet set standards
because developers intentionally traded quality for speed
of implementation.

Not my problem
Occasionally, a project team or staff will concern itself

with day-to-day activities, accepting the development cul-
ture’s status quo and showing no inclination to improve
productivity or quality. For example, error codes might be
hard-coded in the software rather than placed in a table.
When developers ignore best practices, they can leave the
door open for civil, and in some rare cases criminal, liabil-
ity. We call this dilemma not my problem because team
members frequently will state that quality, productivity,
and best-practice issues are someone else’s responsibility.

Red lies
Red lies occur during meetings with clients or man-

agement, when representatives make statements about a
product or project that are known to be untrue—such as
stating that a project’s delivery is on schedule when the
team already knows they cannot deliver it on time.

There is a little bit of not my problem in red lies. For
example, rather than admit that a project is behind sched-
ule, a project manager could rationalize that the burden of
making up the lost time will fall on the development team.
This lets the manager report an idealized schedule. If the
development team does not meet this schedule, that failure
becomes their problem.

The use of the color red is significant in this case because
it indicates what might happen to the company’s bottom
line if this behavior becomes pervasive or ongoing.

Fictionware versus vaporware
The fictionware dilemma occurs when an organization

or individual promises or contracts to deliver a system for
which some agreed-on features are infeasible. Fictionware
and the frequently used term vaporware differ in that a
fictionware product exists but lacks a variable amount
of the specified functionality. In the case of vaporware,
the product simply does not exist. This situation typically
occurs when people feel under intense pressure to meet
sales targets; denial can make it difficult to read a request
for proposal objectively.

Fictionware contracts are endemic in contracting orga-
nizations that decouple sales commissions from delivery.
The sales representative might have only a vague under-
standing that the contracted-for project is infeasible, but
that person really does not care because the commission
is contingent on the contract award, not on long-term
profitability.

Mitigating problems with fictionware can best be
achieved by coupling merit or bonus payments to after-
completion project profit, and by giving engineering
professionals significant upfront responsibility and author-
ity to influence the bidding or quotation process.

Nondiligence
This behavior occurs when important documentation

such as requests for proposals, requirements documents, or
contracts does not receive a thorough review. In the case of
nondiligence, agreements might be made without a careful
understanding of what is being agreed to, either because of
failure to carefully evaluate a specification or failure to pay
close attention to staff when they voice their concerns.

Canceled vacation
A canceled vacation syndrome can arise when manag-

ers pressure staff members at the last minute to cancel
planned trips or otherwise sacrifice their personal time—
and possibly money through, for example, nonrefundable
trip reservations—to meet a short-term deadline.

While working at a consulting company, one of us
observed several consultants being told to cancel their
vacation plans so that a project milestone could be met.
In one case, the employee’s parents were flying in from
overseas, and the trip plans had been finalized nearly a
year before the trip date. The forced cancellation indicated
a lack of planning on the part of project management,
and while potentially solving a short-term problem, in
this particular situation it caused an even more serious
long-term staffing and morale problem. Every employee
asked to cancel a vacation left the company within a year.
Moreover, management killed the project shortly after the
trip cancellations occurred. So the company that fostered
this canceled vacation syndrome gained nothing and lost
several valuable employees.

Nondiligence occurs when important
documentation such as requests for
proposals, requirements documents,
or contracts does not receive a
thorough review.

cover FE ATURE

computer	76

Sweep it under the rug
This syndrome occurs when unforeseen issues arise

that could potentially damage a project or company but,
to keep things running smoothly, developers ignore the
issues in the futile hope they will vanish. For example,
a tester uncovers a flaw in a communication system and
calls it to the attention of his supervisors. They determine
that while the flaw is real, the odds of its impacting the
delivered product are relatively small and, besides, once
the customer starts using it, the responsible parties will
have moved to another project.

Sweep it under the rug differs from not my problem in
that it deals with mishandling or ignoring infrequently oc-
curring unique problems, whereas not my problem occurs
when developers fail to address systemic infrastructure or
process problems.

ACM and IEEE Ethics CODES
The Software Engineering Code of Ethics and Pro-

fessional Practice contains a set of 24 imperatives that
deal with professionalism, the interaction between

professionals and society, and leadership (www.ieee.
org/portal/pages/iportals/aboutus/ethics/code.html);
the ACM Code of Ethics and Professional Conduct
contains a set of 10 imperatives that deal with hon-
esty, responsibility, conflicts of interest, technical
competence, and fairness (www.acm.org/about/code-
of-ethics).5,6 We have cross-referenced the dilemmas
listed with their relevant imperatives in the ACM-IEEE
codes, as Table 1 shows. The imperatives are well-
crafted and comprehensive.

These imperatives have not served the professional
software community as well as they might for a variety
of reasons:

A large percentage of software professionals do not
belong to the IEEE or the ACM.
Many individuals working on projects might not be
software professionals, but instead are product or
project managers.
Many ACM and IEEE members are unfamiliar with
these ethics codes.

•

•

•

Table 1. Mitigation strategies: Cross-referencing dilemmas with imperatives.
Ethical dilemma Applicable ACM–IEEE imperatives Comment

Mission impossible Honor contracts, agreements, and assigned responsibilities—“a
computing professional has a responsibility to request a change in
any assignment that he or she feels cannot be completed as
defined.”

The difficulty with honoring agreements and
not accepting impossible assignments is that
often in the organizational culture accep-
tance of any assignment is the norm when
the assignment comes from a supervisor.

Mea culpa Strive to achieve the highest quality, effectiveness, and dignity in
both the process and products of professional work—“The com-
puting professional must strive to achieve quality and to be
cognizant of the serious negative consequences that may result
from a poor quality system.”

The imperative is too broad to allow the pro-
fessional to recognize when it applies in
routine situations.

Rush job See mea culpa See mea culpa

Not my problem See mea culpa See mea culpa

Nondiligence Give comprehensive and thorough evaluations of computer sys-
tems and their impacts, including possible risks.

Mixed teams of project management, mar-
keting, and sales can make it difficult to
achieve this objective, especially if the opin-
ions given do not coincide with senior
management’s goals.

Fictionware/Vaporware Be honest and trustworthy. Honesty and trustworthiness are much more
difficult to achieve with organizational
dynamics than as an individual. Nonetheless,
per the ACM imperatives, there are times
when a professional should take a stand or
walk away from an assignment.

Canceled vacation Not covered by the ACM code of ethics. The ACM imperatives deal
with fairness and discrimination, not the mistreatment of staff.

The ACM code deals only with generic fair-
ness and nondiscrimination.

Sweep it under the rug Strive to achieve the highest quality, effectiveness, and dignity in
both the process and products of professional work; also, honor
contracts.

Management often resolves problems that
occur during construction and testing of soft-
ware; unfortunately, many managers are
unaware of or consider themselves not
bound by ACM ethical codes.

77JANUARY 2009

Even when somewhat familiar with the imperatives,
peer, organizational, or other pressures might be
brought to bear.
In some cases, the imperatives are vague and require
study to understand when they apply to a particular
situation.

We have selected several imperatives relevant to the
ethical dilemmas described here to highlight how they
might not provide adequate guidance to the software pro-
fessional during daily activities.

Be honest and trustworthy
Determining what honesty entails might be open to

question. Just as a heavy gravitational field can bend light,
heavy organizational or financial pressure can bend the
truth. For example,

telling a client that software is operational when, in
fact, it is under construction;
forecasting a delivery date that is achievable only if
the staff works 24-hour days; or
stating that there are no known problems with soft-
ware when, in fact, testing or development have
reported serious problems.

The problem is not only that honesty might be open to
interpretation, but that intense organizational and financial
pressure might be applied to cast issues in a particularly
biased light.

Quality, effectiveness, and dignity
As conscientious developers, we should strive to achieve

the highest quality and greatest effectiveness in both the
processes and products of our professional work—and we
must do so with dignity.

We learn in requirements engineering that terms like
“highest quality” are inherently ambiguous. We also know
that quality comes at a price. There comes a point at which
the cost to find a product’s last few defects outweighs the
benefits of finding them. Sometimes recognizing that
achieving the highest quality might not be feasible renders
the whole issue of quality moot.

For example, because of a shortage of professional
staff, or for other reasons, there might be no peer reviews

•

•

•

•

•

on a project. Code reviews are one of the most effective
mechanisms for finding software defects; without peer
reviews, an organization might be asking for trouble. Staff
might not know that reviews are missing from their pro-
cess or they might recognize that the reviews are missing
but accept management’s position that there is no time to
conduct them properly.

If an organization is not diligent, its process can easily
degenerate into an anarchic hacking environment.

Criminal versus Unethical Behavior
Sometimes an individual or organization engages in prac-

tices that go beyond unethical and stray into the outright
criminal.7 The individual involved might not realize that the
practice or the lack of best practice is criminal. In the US,
there can be variances in every state in how the laws are in-
terpreted. Outside North America, laws can vary widely, and
a practice that is not criminal in one locale can be in another.
Thus, individuals might break the law without realizing it.

In all cases at all times, software professionals should
be cognizant of the financial, legal, and political reper-
cussions of irresponsible behavior, including condoning
behavior of which they themselves might not take part.

Negligent homicide
Negligent homicide involves the killing of another

person through gross negligence or without malice. Usu-
ally, this sort of unintentional killing involves actors who
should have known they were creating substantial and
unjustified risks of death by conduct that grossly deviates
from ordinary care.8 The IEEE Code of Ethics commits
“to accept responsibility in making decisions consistent
with the safety, health and welfare of the public, and to
disclose promptly factors that might endanger the public
or the environment.”

Reckless endangerment
Reckless endangerment occurs when a person engages in

conduct that creates a grave risk of death to another. Those
engaging in this behavior might not be aware they are endan-
gering others’ welfare. Reckless behavior itself is sufficient.

Depraved indifference
Depending on the laws of the jurisdiction, in a more se-

rious kind of reckless endangerment the person engaging
in behavior that took the life of another did so under cir-
cumstances that evinced a depraved indifference to human
life—fully aware that those actions might lead to another’s
injury or death, but indifferent to that outcome.

Unethical versus criminal behavior
A professional might engage in criminal behavior

without realizing that he or she had done so by acting as
follows:

Software professionals should be
cognizant of the financial, legal,
and political repercussions of
irresponsible behavior.

cover FE ATURE

computer	78

79JANUARY 2009

Not tracing requirements to test cases. A requirement
might state that a radiation dosage for an x-ray ma-
chine can, under no circumstances, exceed 5 RAD. If
the developer permits larger doses to occur, and the
tests do not pick this up, the organization might be
criminally liable for failure to follow best practices
such as end-to-end traceability.
Hard-coding error codes. A rail signaling system hard-
codes errors. Without a table containing the error
codes, it becomes impossible to effectively find and
test each error condition. This makes it possible for
an untested error that occurs during operation to
cause a signal to freeze in the go position, resulting
in a train collision. The company that created the sig-
naling system can be held criminally liable because
basic software engineering texts can show that error
management during software development is a fun-
damental best practice.

One ACM-IEEE imperative is “Know and respect exist-
ing laws pertaining to professional work.” Unfortunately,
in some infrequent situations, professionals learn after
the fact that they might have broken laws or are subject to
criminal or civil penalties. In the eyes of the law, it is still
the individual’s responsibility to ensure that best practices
are followed, regardless of perceived organizational or
management pressure.

Dilemma Magnification Effects
When ethical dilemmas are coupled or chained to-

gether, the results can be more damaging than any one
dilemma occurring alone.9 For example, nondiligence
might result in late delivery. At that time, it might be pos-
sible to renegotiate a viable schedule. However, to make
up for lost time, a mission impossible dilemma results in
difficult schedules with organization pressure applied.
The probability of project failure now increases as things
become more chaotic and process suffers.

Delivery pressure causes the rush job dilemma as de-
velopers abandon best practices to get the software out the
door. The probability of project failure increases again as
failure to follow best practices might result in an untenable
product or delivery that never works. In general, the dilem-
mas tend to cascade: The earlier in the process the dilemmas
are recognized, the easier it might be to alter behavior and
steer toward a positive or at least less negative outcome.

Mitigation Strategies
When faced with a potential ethical dilemma, one of

the best mitigation strategies is to perform a risk analysis
before deciding on a course of action. An effective preven-
tive strategy involves providing a working code of conduct
and holding ethics training sessions for all staff. Table 1
lists additional preventive strategies.

•

•

W
hile most companies and organizations
have ethical codes of conduct, software
professionals might not recognize that
such codes apply to everyday prac-
tices as well. All the dilemmas we have

described occur commonly, but often the participants do
not recognize that their behavior is unethical.10 Perhaps
by naming the dilemmas as developers do with software
patterns, it will be easier to recognize their occurrence
and take corrective action.

Ethical dilemmas can cascade, with an increased
probability of project failure with each misstep. Unfor-
tunately, we lack the data to quantify the contribution of
each dilemma to the probability of project failure.11 Such
information can usually be found buried in the failed-
projects file cabinet.

One possible mechanism for preventing such behavior
is professional or corporate education.12 Clearly, it is not
enough to reach out to members of the IEEE or the ACM
as the initial or causal dilemma in a chain might occur
further upstream—during contract negotiation or product
definition, for example.

Further, IEEE and ACM ethical imperatives must be
clearly communicated to computer science and software
engineering students and professionals so that they can
recognize unethical behavior, see the relevance to their
work, and swiftly stop or mitigate it.13-16

References
	 1.	 T. Forester and P. Morrison, “Computer Ethics: Cautionary

Tales and Ethical Dilemmas in Computing,” Harvard J. Law
& Technology, Spring 1991, pp. 300-305.

	 2.	 V. Flynn and T. Hall, “Ethical Issues in Software Engineer-
ing Research: A Survey of Current Practice,” Empirical
Software Eng., Dec. 2001, pp. 305-317.

	 3.	 E. Towell, “Teaching Ethics in the Software Engineering
Curriculum,” Proc. 16th Conf. Software Eng. Education and
Training, IEEE Press, 2003, pp. 150-157.

	 4.	 R. Godfrey, “The Compleat Software Engineering Profes-
sional—Doing the Right Thing as Well as Doing It Right:
Five Steps on the Road to an Ethics Curriculum,” Proc. Int’l
Conf. Software Engineering: Education and Practice (SE:EP
96), IEEE CS Press, 1996, pp. 26-32.

	 5.	 D. Gotterbarn, K. Miller, and S. Rogerson, “Software En-
gineering Code of Ethics,” Comm. ACM, Nov. 1997, pp.
110-118.

	 6.	 D. Gotterbarn, K. Miller, and S. Rogerson, “Computer So-
ciety and ACM Approve Software Engineering Code of
Ethics,” Computer, Oct. 1999, pp. 84-88.

	 7.	 J.R. Herkert and B.M. O’Connell, “Teaching Product Li-
ability as an Ethical Issue in Engineering and Computer
Science,” Proc. 33rd ASEE/IEEE Frontiers in Education Conf.
(IFIP 03), IEEE Press, 2003, pp. S2A-12.

	 8.	 J. Samaha, Criminal Law, 7th ed., Wadsworth Group/
Thomson Learning, 2002.

	 9.	 R.P. Feynman, “Appendix to the Roger’s Commission
Report on the Space Shuttle Challenger Accident,” Report

IEEE Software seeks practical,

readable articles that will appeal

to experts and nonexperts alike.

The magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Submissions must be original and

no more than 5,400 words, including

200 words for each table and figure.

Call
Articlesfor

Author guidelines: www.computer.org/software/author.htm
Further details: software@computer.org

www.computer.org/software

Proc. 17th Conf. Software Engineering Education and Train-
ing, IEEE CS Press, 2004, pp. 39-44.

 16. E. Georgiadou and P.K. Oriogun, “Professional Issues in
Software Engineering Curricula: Case Studies on Ethical
Decision Making,” Proc. Int’l Symp. Technology and Society,
IEEE CS Press, 2001, pp. 252-261.

Brian Berenbach is the technical manager of the Re-
quirements Engineering Competency Center at Siemens
Corporate Research, Princeton, N.J., and is an ACM Dis-
tinguished Engineer. Berenbach received an MSc in
thermodynamics from Emory University. Contact him at
brian.berenbach@siemens.com.

Manfred Broy is a professor in the Department of Infor-
matics of Technische Universität München, Germany. His
research interests are software and systems engineering,
comprising both theoretical and practical aspects. Broy
received a Habilitation degree in informatics from the
Technische Universität München. Contact him at broy@
in.tum.de.

of the Presidential Commission on the Space Shuttle Chal-
lenger Accident, Washington, D.C., 6 June 1986; www.
ralentz.com/old/space/feynman--report.html.

 10. K. Brunnstein, “Why a Discussion on Ethical Issues in
Software Engineering Is Overdue,” Ethics of Computing:
Codes, Spaces for Discussion and Law, Chapman & Hall,
1996, pp. 52-55.

 11. J. Singer and G. Vinson, “Ethical Issues in Empirical Studies
of Software Engineering,” IEEE Trans. Software Eng., Dec.
2002, pp. 1171-1180.

 12. H. Pournaghshband and A. Salehnia, Ethical Issues of
Information Systems, Idea Publishing Group, 2001, pp.
253-256.

 13. D. Gotterbarn, “Ethical Considerations in Software Engi-
neering,” Proc. 13th Int’l Conf. Software Eng., IEEE CS Press,
1991, pp. 266-274.

 14. D. Gotterbarn, “Raising the Bar: A Software Engineering
Code of Ethics and Professional Practice,” Proc. Ethics and
Social Impact Component on Shaping Policy in the Informa-
tion Age, ACM Press, 1998, pp. 26-28.

 15. J.B. Thompson and E. Towell, “A Further Exploration of
Teaching Ethics in the Software Engineering Curriculum,”

COVER FE ATURE

computer	80

