
Switch/Case Expressions and Java Shortcuts
Norton CS139

§ The switch/case Statement

o A multi-path selection structure
§ The switch statement provides another way to decide which

statement to execute next
§ The switch statement evaluates an expression, then attempts to

match the result to one of several possible cases
§ Each case contains a value and a list of statements
§ The flow of control transfers to statement associated with the first

case value that matches
o The general syntax of a switch statement is:

o Limiting the flow of control – the break statement
§ Often a break statement is used as the last statement in each

case's statement list
§ A break statement causes control to transfer to the end of the

switch statement
§ If a break statement is not used, the flow of control will continue

into the next case
§ Sometimes this may be appropriate, but often we want to execute

only the statements associated with one case

switch (expression)
{
 case value1 :
 statement-list1
 case value2 :
 statement-list2
 case value3 :
 statement-list3
 case ...

}

switch
and
case

are
reserved

words

If expression
matches value2,
control jumps
to here

 2

o An example of a switch statement:

switch (aCharVar)
{
 case ‘A’:
 aCount++;
 break;
 case ‘B’:
 bCount++;
 break;
 case ‘C’:
 cCount++;
 break;
}

o The default case

§ A switch statement can have an optional default case
§ The default case has no associated value and simply uses the

reserved word default
§ If the default case is present, control will transfer to it if no

other case value matches
§ If there is no default case, and no other value matches, control

falls through to the statement after the switch
o The switch statement - restrictions

§ Originally, the expression of a switch statement had to result in an
integral type, meaning an int (also byte and short) or a char.

§ However, beginning with Java 1.7 (what we’re using), the expression
can be a String object as well.

§ It cannot, however, be a boolean value, a floating point value
(float or double), or a long (integral type: why? I have no idea!).

o The case statement – limitations
§ The data type of the case expression must match that of the

switch expression.
§ The implicit boolean condition in a switch statement is equality.

(== or in the case of a String, .equals()).
§ You cannot perform relational checks with a switch statement

o See OldGradeReport.java, GradeReport.java,
CharGradeReport.java and StringGradeReport.java.

 3

§ Java Shortcuts
o Incrementers & Decrementers

§ The increment and decrement operators use only one operand
• The increment operator (++) adds one to its operand
• The decrement operator (--) subtracts one from its operand
• The statement:

count++;

is (almost) functionally equivalent to:

count = count + 1;

§ Prefix and Postfix forms
• The increment and decrement operators can be applied in

postfix form:

count++

• or prefix form:

++count

• If used by themselves, the 2 forms are equivalent.
• When used as part of a larger expression, the two forms can

have different effects.
o Postfix form handles assignment first and

increment/decrement second
o Prefix form handles increment/decrement first and

assignment second

int a;
int x = 5;

a = x++; // a = 5!!!, x = 6
a = ++x; // a = 6, x = 6

• Because of their subtleties, the increment and decrement
operators should be used with care

 4

o Assignment Operators
§ Often we perform an operation on a variable, and then store the

result back into that variable
§ Java provides assignment operators to simplify that process
§ For example, the statement: num += count;

is equivalent to: num = num + count;
§ There are many assignment operators in Java, including the

following:

§ The right hand side of an assignment operator can be a complex

expression
§ The entire right-hand expression is evaluated first, then the result

is combined with the original variable
§ Therefore: result /= (total-MIN) % num;

is equivalent to: result = result / ((total-MIN) % num);
§ The behavior of some assignment operators depends on the types of

the operands
• If the operands to the += operator are strings, the

assignment operator performs string concatenation
• he behavior of an assignment operator (+=) is always

consistent with the behavior of the corresponding operator
(+)

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

 5

o The Conditional Operator
§ Java has a conditional operator that uses a boolean condition to

determine which of two expressions is evaluated
§ Its syntax is:

condition ? expression1 : expression2

• If the condition is true, expression1 is evaluated; if it is
false, expression2 is evaluated

• The value of the entire conditional operator is the value of the
selected expression

§ The conditional operator is similar to an if-else statement, except
that it is an expression that returns a value

§ For example:

 larger = ((num1 > num2) ? num1 : num2);

• If num1 is greater than num2, then the value of num1 is
assigned to larger; otherwise, num2 is assigned to larger

§ The conditional operator is ternary because it requires three
operands

§ Another example:

System.out.println ("Your change is " + count +
 ((count == 1) ? "Dime" : "Dimes"));

• If count equals 1, then "Dime" is printed
• If count is anything other than 1, then "Dimes" is printed

