
Boolean Expressions & Selection Structures (if && if/else)
Norton CS139

 Relational Operators

o A Boolean expression in Java is an expression that returns either true
or false. Boolean expressions use Java's relational operators.

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

o Note the difference between the equality operator (==) and the

assignment operator (=)
o The result of a Boolean expression can be assigned to a boolean

variable:

int a;
int b;
boolean isGreaterThan = a > b;

o A Boolean expression can also be used to return a boolean value from
a method:

public boolean isGreaterThan()
{

return a > b;
}

o The method, then can be used in place of a Boolean expression or a
boolean variable:

boolean myBool = isGreaterThan();

 2

 Comparing Things (Primitive Types)
o We can use the relational operators on integer types and character

data
o When comparing chars, the results are based on the Unicode

character set
o The following expression is true because the character '+' comes

before the character 'J' in Unicode:

boolean equalTo = '+' < 'J‘;

o The uppercase alphabet (A-Z) and the lowercase alphabet (a-z) both
appear in alphabetical order in Unicode

o We have to be careful, though, when comparing two floating point
values (float or double) for equality

 You should rarely use the equality operator (==) when comparing
two floats

 In many situations, you might consider two floating point
numbers to be "close enough" even if they aren't exactly equal

 Therefore, to determine the equality of two floats, you may
want to use the following technique:

boolean floatsAreEqual =

Math.abs(f1 - f2) < 0.00001;

 Comparing Things (Strings & Other Objects)
o Objects cannot be compared using the relational operators (why?)
o Since character strings in Java are objects, we cannot use the

relational operators to compare their contents
o The equals() method can be called on a string to determine if two

strings contain exactly the same characters in the same order
o The String class also contains a method called compareTo() to

determine if one string comes before another alphabetically (as
determined by the Unicode character set)

String myString = “Hello”;
String yourString = “Hello”;

boolean stringsAreEqual =
 myString.equals(yourString);

int comparison = myString.compareTo(yourString);

 3

o What happens if we use relational operators with Objects?

String stringOne = “Hello”;
String stringTwo = “Hello”;

boolean oops = (StringOne == stringTwo);

Hint: what is actually stored in stringOne and stringTwo?

 Logical Operators
o Boolean expressions can also use the following logical operators:

! Logical NOT
&& Logical AND
|| Logical OR

o They all take boolean operands and produce boolean results
o Logical NOT is a unary operator (it has one operand), but logical AND

and logical OR are binary operators (they each have two operands)
o The logical NOT operation is also called logical negation or logical

complement
 If some boolean condition a is true, then !a is false; if a is

false, then !a is true
o The logical AND expression:

 a && b
• is true if both a and b are true, and false otherwise

o The logical OR expression:
 a || b

• is true if either a or b (or both) are true, and false
otherwise

 4

 Truth Tables
o A truth table shows the possible true/false combinations for the

logical AND and logical OR expressions:
o Since && and || each have two operands, there are four possible

combinations of true and false

o Since the logical NOT operator has only a single operand, its truth
table has only two combinations of true and false

a

true
true
false
false

b

true
false
true
false

a && b

true
false
false
false

a || b

true
true
true
false

a

true
false

!a

false
true

 5

 Complex logical statements
o Logical operators can be used to join Boolean expressions to form

complex expressions

boolean complexBoolean = total < MAX && !found;

o Logical operators have precedence relationships between themselves
and other operators

 Arithmetic operators have higher precedence than relational
operators

total != stock + warehouse

• The addition will be evaluated first!
 Relational operators have higher precedence than logical

operators
 Logical operators have precedence relationships among

themselves

! - highest
&&

|| - lowest

 Parentheses can be used to alter the normal precedence:

(a || b) && c

o Specific expressions can be evaluated using truth tables:

total < MAX

false
false
true
true

found

false
true
false
true

!found

true
false
true
false

total < MAX
 && !found

false
false
true
false

 6

o Complex Boolean expressions are short circuited:

(x != 0) && (y / x > 5) – whew!
(y / x > 5) && (x! = 0) – oops!

 Selection Structures

o Unless indicated otherwise, the order of statement execution through
a method is linear:

 one after the other in the order they are written
 We call these “Sequential Structures” (or “Linear Structures”)

o Some programming statements modify that order, allowing us to:
 decide whether or not to execute a particular statement,

 or
 perform a statement over and over repetitively

o The order of statement execution is called the flow of control
o A selection statement (or conditional statement) lets us choose which

statement will be executed next
o Selection statements give us the power to make basic decisions
o Java provides 3 selection statements:

 the if statement,
 he if-else statement, and
 the switch statement

 The if statement

o The if statement has the following syntax:

if (condition)
 statement;

ifif is a Java
reserved

wordword

The condition must be a boolean
expression

(or variable).
It must evaluate to either true or It must evaluate to either true or

false.false.

If the condition is true, the statement is
executed.

If it is false, the statement is skipped.If it is false, the statement is skipped.

 7

o An example of an if statement:

if (sum > MAX)
delta = sum - MAX;

System.out.println ("The sum is " + sum);

1. First the condition is evaluated -- the value of sum is either
greater than the value of MAX, or it is not

2. If the condition is true, the assignment statement is executed -- if
it isn’t, it is skipped.

3. Either way, the call to println is executed next

o See Age.java

 Indentation
o The statement controlled by the if statement is indented to indicate

that relationship
o The use of a consistent indentation style makes a program easier to

read and understand
o Although it makes no difference to the compiler, proper indentation is

crucial

"Always code as if the person who ends up maintaining your code will be a
violent psychopath who knows where you live."

Martin Golding

 Logic of an if statement

condition
evaluated

falsfals
ee

statement

trutru
ee

 8

 The if/else statement
o An else clause can be added to an if statement to make it an if-else

statement:

if (condition)
statement1;

else
statement2;

o If the condition is true, statement1 is executed; if the condition is
false, statement2 is executed

o One or the other will be executed, but not both
o See Wages.java

 Logic of an if/else statement

 The Coin class
o Let’s examine a class that represents a coin that can be flipped
o Instance data is used to indicate which face (heads or tails) is

currently showing
 See CoinFlip.java
 See Coin.java

condition
evaluated

statement1

trutru
ee

falsfals
ee

statement2

 9

 Complex if/else statements
o Several statements can be grouped together into a block statement

 A block is delimited by braces ({ … })
 A block statement can be used wherever a statement is called

for in the Java syntax
 For example, in an if-else statement, the if portion, or the

else portion, or both, could be block statements

if (someCondition)
{

int temp;
temp = 6;
doSomething(temp);
doSomethingElse(temp);

}
else
{
 int temp;
 temp = 3;
 doSomethingTotallyDifferent(temp);
}

 See Guessing.java
o The statement executed as a result of an if statement or else clause

could be another if statement
 These are called nested if statements
 See MinOfThree.java
 An else clause is matched to the last unmatched if (no matter

what the indentation implies)

if (someCondition)
if (someOtherCondition)

doStuff();
else

doOtherStuff();
else

doStillOtherStuff();

