Boolean Expressions & Selection Structures (if && if/else)
Norton 5139

= Relational Operators
o A Boolean expression in Java is an expression that returns either true
or false. Boolean expressions use Java's relational operators.

== equal o

1= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

o Note the difference between the equality operator (==) and the
assignment operator (=)

o The result of a Boolean expression can be assigned to a boolean
variable:

int a;
int b;
boolean isGreaterThan = a > b;

o A Boolean expression can also be used to return a boolean value from
a method:

public boolean isGreaterThan ()

{

return a > b;

}

o The method, then can be used in place of a Boolean expression or a
boolean variable:

boolean myBool = isGreaterThan() ;

= Comparing Things (Primitive Types)
o We can use the relational operators on integer types and character
data
o When comparing chars, the results are based on the Unicode
character set
o The following expression is true because the character '+' comes
before the character 'J" in Unicode:

boolean equalTo = '+' < 'J';

o The uppercase alphabet (A-Z) and the lowercase alphabet (a-z) both
appear in alphabetical order in Unicode
o We have to be careful, though, when comparing two floating point
values (float or double) for equality
* You should rarely use the equality operator (==) when comparing
two floats
» TIn many situations, you might consider two floating point
numbers to be “close enough" even if they aren't exactly equal
» Therefore, to determine the equality of two floats, you may
want to use the following technique:

boolean floatsAreEqual =
Math.abs(f1 - £2) < 0.00001;

= Comparing Things (Strings & Other Objects)

o Objects cannot be compared using the relational operators (why?)

o Since character strings in Java are objects, we cannot use the
relational operators tfo compare their contents

o The equals() method can be called on a string to determine if two
strings contain exactly the same characters in the same order

o The String class also contains a method called compareTo () to
determine if one string comes before another alphabetically (as
determined by the Unicode character set)

String myString = “Hello”;
String yourString = “Hello”;

boolean stringsAreEqual =
myString.equals(yourString) ;

int comparison = myString.compareTo(yourString)

o What happens if we use relational operators with Objects?

String stringOne = “Hello”;
String stringTwo = “Hello”;
boolean oops = (StringOne == stringTwo) ;

Hint: what is actually stored in stringone and stringTwo?

» Logical Operators
o Boolean expressions can also use the following logical operators:

! Logical NOT
&& Logical AND
Il Logical OR

They all take boolean operands and produce boolean results
Logical NOT is a unary operator (it has one operand), but logical AND
and logical OR are binary operators (they each have two operands)
o The logical NOT operation is also called logical negation or logical
complement
» TIf some boolean condition a is frue, then 'a is false; if ais
false, then 'a is true
o The logical AND expression:
= a && b
* istrueif both a and b are true, and false otherwise
o The logical OR expression:
= a || b
* is true if either a or b (or both) are true, and false
otherwise

* Truth Tables
o A truth table shows the possible true/false combinations for the
logical AND and logical OR expressions:
o Since s& and | | each have two operands, there are four possible
combinations of true and false

a b a && b a || b
true true true true
true false false true
false true false true
false false false false

o Since the logical NOT operator has only a single operand, its truth
table has only two combinations of true and false

a la
true false
false true

= Complex logical statements
o Logical operators can be used to join Boolean expressions to form
complex expressions

boolean complexBoolean = total < MAX && !'found;

o Logical operators have precedence relationships between themselves
and other operators
* Arithmetic operators have higher precedence than relational
operators

total '= stock + warehouse

* The addition will be evaluated first!
» Relational operators have higher precedence than logical
operators
» Logical operators have precedence relationships among
themselves

! - highest
&&
Il - lowest
» Parentheses can be used to alter the normal precedence:

(a || b)) && c

o Specific expressions can be evaluated using truth tables:

total < MAX | found Ifound total < MAX

&& !found
false false true false
false true false false
true false true true
true true false false

o Complex Boolean expressions are short circuited:

(x'=0) && (y / x> 5) - whew!
(y/ x>5) & (x! =0) - oops!/

» Selection Structures
o Unless indicated otherwise, the order of statement execution through
a method is linear:
= one after the other in the order they are written
» We call these "Sequential Structures” (or "Linear Structures”)
o Some programming statements modify that order, allowing us to:
» decide whether or not to execute a particular statement,
or
= perform a statement over and over repetitively
The order of statement execution is called the flow of control
A selection statement (or conditional statement) lets us choose which
statement will be executed next
Selection statements give us the power to make basic decisions
Java provides 3 selection statements:
* the if statement,
* he if-else statement, and
* the switch statement

* The if statement
o The if statement has the following syntax:

The condition must be a boolean
expression

if isaJava)
(or variable).

reserved !
~N

if (condition)
statement;

T

If the condition is true, the statement is
executed.

o Anexample of an if statement:

if (sum > MAX)

delta = sum - MAX;

System.out.println ("The sum is " + sum);

1. First the condition is evaluated -- the value of sum is either
greater than the value of MAX, or it is not
2. If the condition is true, the assignment statement is executed -- if

it isn't, it is skipped.

3. Either way, the call to println is executed next

o See Age.java

= Tndentation

o The statement controlled by the if statement is indented to indicate

that relationship

o The use of a consistent indentation style makes a program easier to

read and understand

o Although it makes no difference to the compiler, proper indentation is

crucial

""Always code as if the person who ends up maintaining your code will be a
violent psychopath who knows where you live."

Martin Golding

* Logic of an if statement

1

condition
evaluated

tru

v

statement

fals

» The if/else statement
o An else clause can be added to an if statement to make it an if-else
statement:
if (condition)
statementl;

else
statement2;

o If the conditionis true, statementl is executed; if the condition is
false, statement2 is executed
One or the other will be executed, but not both
See Wages. java

» Logic of an if/else statement

l

condition
evaluated
tru fals
v \ 4
statement1 statement2
v
= The Coin class

o Let's examine a class that represents a coin that can be flipped
o Instance data is used to indicate which face (heads or tails) is
currently showing
= See CoinFlip.java

= See Coin.java

» Complex if/else statements
o Several statements can be grouped together into a block statement
» A block is delimited by braces ({ .. })
* A block statement can be used wherever a statement is called
for in the Java syntax
* For example, in an if-else statement, the if portion, or the
else portion, or both, could be block statements

if (someCondition)

{
int temp;
temp = 6;
doSomething(temp) ;
doSomethingElse(temp) ;

else

int temp;

temp = 3;

doSomethingTotallyDifferent(temp) ;
}

= See Guessing.java
o The statement executed as a result of an if statement or else clause
could be another if statement
* These are called nested if statements
= See MinOfThree.java
* An else clause is matched to the last unmatched if (no matter
what the indentation implies)

if (someCondition)
if (someOtherCondition)
doStuff () ;
else
doOtherStuff () ;
else
doStillOtherStuff() ;

