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I Circulits

* Circuits are formed by linking gates (or other circuits) together

- Inputs and outputs
 Link output of one gate to input of another
* Some circuits have multiple inputs and/or outputs
- Combinational circuits: outputs are a boolean function of inputs
* Not time-dependent
* Used for computation
- Sequential circuits: output is dependent on previous outputs

* Time-dependent
e Used for memory



I Circuit memory

* Question: How do we make a circuit “remember’ something?

- Answer: Create a feedback loop!
- Creates a “storage” circuit, often called a latch
— Truth table must include previous state

- Alternatively, draw a timing diagram

* Shows how input/output signals change with respect to time
« Given input signals in diagram, we can determine output signals



I SR AND-OR latch
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SR NOR latch

R|®
Q Works similarly to AND-OR, but requires
one fewer gate (and it is a universal gate!)
Question: What happens if we turn both R
s[® Q and S on at the same time?

Disallow S=1, R=1 because Q' #!Q



I D latch

0y

S|@fF— |

é)_I_DO—l °© I
D|® a b c

From “Code” book: S = “Save that bit!”

* As long as S is on, Q reflects the value of D.

 When S turns off, Q is "frozen" and retains its previous value.

* D can change while S is off with no change in Q



I Clocks

Provide oscillating signal

Often used as “set” signal for latches

Keeps computation and memory in sync

Clocked latches are called flip-flops
The clock period is the inverse of the frequency (measured in hertz)

The length of a clock period determines the minimum time an
Instruction takes to execute

Clk

||
Clock period=1/f



I Flip-flop types

* SR: "set-reset”

D: “data” bit + clock

e T: “toggle”

JK: like SR + T (toggle when S=1, R=1)

- JisS,KisR

* Any of these can be used to build the others

* Also can be built from basic logic gates in multiple ways



I Signal changes

* The original D latch reflects D input on Q as long as “set” is on
* Edge-triggered flip-flops change Q on rising edge of “set” signal
* Master-slave flip-flops change Q on falling edge of “set” signal
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Edge-triggered D latch Master-slave D latch



I Registers

Registers: arrays of flip-flops with a single set/clock input

Connected by buses (groups of wires) to other components

Edge triggering allows computation to stabilize before results are saved

Caveat: difference between hardware registers and program registers
- Former are physical, latter are logical (and stored in a register file)
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I Register files

* Register files: multiple registers w/ read/write ports
- Use multiplexors and decoders to differentiate
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I Register files

* Register files: multiple registers w/ read/write ports
- Use multiplexors and decoders to differentiate

Read register valA
number 1 Read A
Read register data 1 SrcA valW
——l ¢
number 2 Register _
Read ports fg“ W dstw  Write port
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I Memory

* Memory: multiple flip-flops w/ address input

- Random access memory (RAM) - can access any address at any time
- Use decoder (translates n-bit number to 2" “set” signals) to write data

- Use selector (multiplexor) to read data

Address Write Dataln
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Single 8-element RAM array (3-bit addresses)
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ALUs and memory

 Combine adders and multiplexors to make arithmetic/logic units
* Combine flip-flops to make register files and main memory
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I CPUs

 Combine ALU with
registers and

memory to make
CPUs

(on Thursday!)

Write back

P e
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