——— ; l‘l—_ 1

(1) - JZv

% & | e
8,

CS 261 i
Fall 2019 [

(+ PUL THIS WIRE REALY TIGHT

T
71

= Ccavrion [

Mike Lam, Professor

IR o g2 AR
INSTEAD S) 8w \'Boc% THIS
]

Sequential Circuits

I Circulits

* Circuits are formed by linking gates (or other circuits) together

- Inputs and outputs
 Link output of one gate to input of another
* Some circuits have multiple inputs and/or outputs
- Combinational circuits: outputs are a boolean function of inputs
* Not time-dependent
* Used for computation
- Sequential circuits: output is dependent on previous outputs

* Time-dependent
e Used for memory

I Circuit memory

* Question: How do we make a circuit “remember’ something?

- Answer: Create a feedback loop!
- Creates a “storage” circuit, often called a latch
— Truth table must include previous state

- Alternatively, draw a timing diagram

* Shows how input/output signals change with respect to time
« Given input signals in diagram, we can determine output signals

I SR AND-OR latch

S ——
R|® E
s|® Q R |
Q
S =*“set” R=“reset” a b d
R|®
Event
a 5 o Q
(S on)
R|®
Event

(S off)

SR NOR latch

R|®
Q Works similarly to AND-OR, but requires
one fewer gate (and it is a universal gate!)
Question: What happens if we turn both R
s[® Q and S on at the same time?

Disallow S=1, R=1 because Q' #!Q

I D latch

0y

S|@fF— |

é)_I_DO—l °© I
D|® a b c

From “Code” book: S = “Save that bit!”

* As long as S is on, Q reflects the value of D.

 When S turns off, Q is "frozen" and retains its previous value.

* D can change while S is off with no change in Q

I Clocks

Provide oscillating signal

Often used as “set” signal for latches

Keeps computation and memory in sync

Clocked latches are called flip-flops
The clock period is the inverse of the frequency (measured in hertz)

The length of a clock period determines the minimum time an
Instruction takes to execute

Clk

||
Clock period=1/f

I Flip-flop types

* SR: "set-reset”

D: “data” bit + clock

e T: “toggle”

JK: like SR + T (toggle when S=1, R=1)

- JisS,KisR

* Any of these can be used to build the others

* Also can be built from basic logic gates in multiple ways

I Signal changes

* The original D latch reflects D input on Q as long as “set” is on
* Edge-triggered flip-flops change Q on rising edge of “set” signal
* Master-slave flip-flops change Q on falling edge of “set” signal

S S
D i D |
Q — Q —

a b e a b e

Edge-triggered D latch Master-slave D latch

I Registers

Registers: arrays of flip-flops with a single set/clock input

Connected by buses (groups of wires) to other components

Edge triggering allows computation to stabilize before results are saved

Caveat: difference between hardware registers and program registers
- Former are physical, latter are logical (and stored in a register file)

9 x8 out
.

1

R o —
> oF b of of & of o Qf Qf Q
Dend enl 0 Dend Den Dend Dend Dend
— |

E
Datal x8 r

State = x State =y

Input =y Output = x |:> F;:?:E |:> Output =y
=DiIx—> j =y >

I Register files

* Register files: multiple registers w/ read/write ports
- Use multiplexors and decoders to differentiate

Write Read register
(clock) | number 1
} c Register 0 -
]
i Register 0 Register 1 M
D
-2 . - -
Register number - d:{:gdir : - “ns u Read data 1
Register n—- 2
n—2 Register 1 = 1
= egister n - .
n=1 [g b
Read ragister
number 2 /l\
} +
c
Register n=2 M
D = u + Read data 2
} l
C
Register n—1 I,
E S

Register data =D

I Register files

* Register files: multiple registers w/ read/write ports
- Use multiplexors and decoders to differentiate

Read register valA
number 1 Read A
Read register data 1 SrcA valW
——l ¢
number 2 Register _
Read ports fg“ W dstw Write port
) Register file B e
Write Read va
register data 2
srcB | B
Write T —
data Write T
(clock) EIDCk

Canvas PDF version CS:APP version

I Memory

* Memory: multiple flip-flops w/ address input

- Random access memory (RAM) - can access any address at any time
- Use decoder (translates n-bit number to 2" “set” signals) to write data

- Use selector (multiplexor) to read data

Address Write Dataln

So Data
5

—1 5, 3-to-8 Decoder
0, 0, 04 Oy 0, 0, 0, 0
W DI||W DI||W DI W DI W DI WDl W oDl|lw m
Do DO Do Do Do DO Do DO
D, Dy D D, D, D, D, D,
5p

8-to-1 Selecror

Output

I

Data Qut

Single 8-element RAM array (3-bit addresses)

data out
error afsannnnnnansnnnny T
read >
Data
memo
Wil Y f—clock

)

address datain

Abstraction of multiple
RAM arrays

ALUs and memory

 Combine adders and multiplexors to make arithmetic/logic units
* Combine flip-flops to make register files and main memory

2
Y—*}L\ Y—ﬁer Y——:ix Y—qux

0
A
1 ¢ X Y i *X-Y
U
B

I
U
X-*f/’ X—*i/’ X—‘ﬁ/’ X—-//’

Basic Arithmetic Logic Unit (ALU)

3
A
*Xe&Y It Gl Y
u
B

nlF—e : :
8-bit Qf I-’ Q- I-’ Q- o 9 ar Qf o QJ—
Register

E
Data x8 J

I CPUs

 Combine ALU with
registers and

memory to make
CPUs

(on Thursday!)

Write back

P e

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 17
	Slide 18

