CS 240 Fall 2014

Mike Lam, Professor

Just-for-fun survey: http://strawpoll.me/2421207

Today

- Course overview
- Course policies
- Python

Motivation

- Computers are digital
 - Data is stored in binary format (1's and 0's)
 - Assembly programming uses this directly
 - This is tedious and error-prone!
- High-level languages (like Java) help
 - Variables (where are the bits located?)
 - Data types (what do the bits mean?)
 - But they don't inherently solve all problems

Basic Example

• Arrays vs. Linked Lists

Overview

- Data structures
 - Abstractions for organizing data on a computer
 - "How is your data organized?"
 - Generally, the goal is to be as efficient as possible
 - Topics: arrays, linked lists, stacks, queues, trees, graphs, maps, hash tables

Overview

- Algorithms
 - Step-by-step procedure to solve a problem
 - "How exactly do I do ____?"
 - Generally, the goal is to be as efficient as possible
 - Topics: recursion, asymptotic analysis, Big-O notation, searching, sorting

Overview

- Lots of crossover
 - Most data structures are designed to help solve particular types of problems
 - Many algorithms take advantage of particular data structures

Key Concepts

- Abstract data types
 - Generic classes of data structures
 - Often provided with a language's standard library
 - Two goals: efficiency and reusability
- Algorithm analysis
 - Measuring efficiency (what metrics to use?)
 - Comparing algorithms (which is faster?)
 - Empirical (test it!) and analytical (math!)

Goals

- Describe, implement, and analyze common data structures and algorithms
- Choose appropriate structures and algorithms to solve real-world problems
- Secondary goal: become familiar with a programming language that is not Java

Syllabus

- It's online:
 - http://w3.cs.jmu.edu/lam2mo/cs240/syllabus.html
- Read it!
 - Especially the parts marked in red
- The textbook is required
 - "Data Structures and Algorithms in Python"
 - Goodrich, Tamassia, Goldwasser
 - Available on Safari online (not always accessible)

- Attendance is not mandatory
 - If the class periods are not worth attending, tell me so that I can make them better!
- Slides will be posted on the website
 - Don't waste time writing down stuff from the slides
- Please silence your cell phones during class

- Submit programming projects as specified in the project description
 - No thumb drives, CDs, or emails (unless requeste
- Project grading will be based on automated tes results
- Late submissions up to 72 hours will receive a 10% penalty per 24 hr period

- The JMU Honor Code applies on ALL assignments
 - We will use software to detect plagiarism
 - Violations may be sent to the honor council
- All submitted code must be YOUR work entire
 - You may work in groups to discuss assignments (in fact, I encourage this), but do NOT share code!

Homework Assignments	30%
Programming Projects	25%
Midterm Exams	30%
Final Exam	15%

- Exams will be held in ISAT 243
- Final exam times are on the website
- If you ask for a re-grade, I may re-grade the entire assignment
 - This applies to homework and projects, too
- If you have to miss a due date or exam because of an excused absence, let me know ASAP

Course Website

- This is the main course website:
 - http://w3.cs.jmu.edu/lam2mo/cs240/
- Lots of useful stuff:
 - Syllabus
 - Calendar
 - Assignments
 - Resources
- Check it regularly!

Online Systems

- Canvas
 - Grades and online quizzes
- Piazza (accessed via Canvas)
 - Q&A and discussions
- Web-CAT
 - Project submissions
 - Not quite ready yet
- Make sure you have accounts on all of these!

Python

- We will use Python 3 for all code examples an programming projects
- Important websites:
 - www.python.orgmain Python website
 - For installation and documentation
 - www.pythontutor.com/web-based testbed
 - For quick experimentation and learning

Python

- Python is a "scripting language"
 - Interpreted, not compiled
 - Although compilers do exist
 - Dynamic typing
 - Only runtime objects have types
 - Good for quick prototyping

Python Example

value = 1
for x in range(11):
 print("2 ^ " + str(x) +" = " + str(value))
 value *= 2

Why Python?

- It's a very popular scripting language
- It's available on most platforms
- It's relatively easy to learn
- There are many utility libraries
- Widely-used
 - YouTube, Reddit, Digg, Pinterest, Yelp, ILM, Rackspace, Phillips, Honeywell, etc.

Why Python 3?

- Backwards-incompatible
- Designed to fix fundamental design flaws
- Some major changes:
 - print "hello" → print("hello")
 - all strings are Unicode
 - iterators instead of lists in many places
 - removed old class implementation
- 2to3 utility for semi-manual conversion

Python

- Whitespace is important
 - These are different:

```
if a < b:
    print("less than")
    print("good to go!")
```

```
if a < b:
    print("less than")
print("good to go!")
```

- Be careful!
 - Use a Python-aware editor (some suggestions are on the website)

Python

- We will use the PEP 8 style guide:
 - http://legacy.python.org/dev/peps/pep-0008/
 - Link is also on the class website ("Resources")
 - See also the summarized version
- Keep your code clean
- Include documentation
 - Use docstrings (we will discuss this later)

Learning Python

- We will spend a couple of weeks learning Python
 - Hybrid lecture/labs and dedicated lab time
 - Major programming project TBD
- There are MANY tutorials available online if you wish to move faster or if you are having trouble with particular topics
- I recommend spending lots of time outside class experimenting
- You will also need an IDE or a text editor and console

Homework

- If you have a personal computer, install Python 3 and either 1) an IDE or 2) text editor and console
 - Alternatively, go into ISAT 248 and familiarize yourself with the software on the lab computers
 - Change the code snippet from the earlier slide to calculate Fibonacci numbers rather than powers of two
- Complete course survey and reading quiz by Wednesday (both are on Canvas)

Contacting Me

- Questions? Try Piazza!
- Email: lam2mo
 - I will attempt to respond as quickly as possible, but do not expect a response in under 24 hours
- Office: ISAT 227
 - Office hours TBD
 - Please fill out the course survey
 - Appointments preferred outside office hours

Good luck!

• Have a great semester!