CS139 Algorithm Development
Activity 10A - Nested Control Structures
Objectives
At the end of this exercise, students will:
· be able to read and write simple nested control structures in Java.
Instructions
1. For each of the following exercises, first develop an algorithmic solution in pseudocode, and then write it in Java.
2. Hand in a record of your completed Java solutions.
Part 1 - Nested Decisions

A "nested" decision is one that is made within the context of another decision. This construct is used when there are two independent decisions to be made simultaneously.
 if (<decision 1>)
 {
 if (<decision 2>)
 {
 <statement-1>
 }
 else
 {
 <statement-2>
 }
 }
 else
 {
 if (<decision 2>)
 {
 <statement-3>
 }
 else
 {
 <statement-4>
 }
 }
For this step of the activity, write a method that will return a rating value for life insurance applicants according to the following table. Assume that sex is either 'M' or 'F' and age is 18-99.
	Male Age
	Rating
	
	Female Age
	Rating

	18-35
	A
	
	18-50
	A

	35-55
	B
	
	51-99
	B

	55-99
	C
	
	-
	-

Use a nested if statement in your method.
// return the correct rating, 'A', 'B', or 'C'
public char rating(int age, char sex)
BOARD Part 2 - Nested Loops
A "nested" loop is one that exists within the scope of another loop. This construct is often used when there are two independent variables in an iteration in which all combinations must be examined.
 for (int i=0; i<10; i++)
 {
 for (int j=0; j<10; j++)
 {
 System.out.println("The product of " + i + " and " + j
 + " is " + (i * j));
 }
 }

For this step of the activity, write a method that will compute and display the factorial of each integer value from 1 to limit. The factorial of a number, N, is (N * (N-1) * (N-2) * … * 1). Use a nested loop construct to solve the problem.
// display N! for each value of N, 1 through limit
public void factorials(int limit)
Put your group answer on the board when complete.
Part 3 - Combinations of Loops and Decisions
For this step of the activity, write a method that will find and list all of the "perfect" numbers from 1 to N. A perfect number is equal to the sum of all of its factors (i.e., all of the numbers that will divide it evenly). For example:

6
= 1 + 2 + 3

28
= 1 + 2 + 4 + 7 + 14
// display all of the perfect numbers from 1 to N
public void perfect(int n)
First understand the problem. What is another perfect number? ________ How did you figure it out?

Hint: Use one loop to count from 1 to N, and another loop to sum all of the proper factors of the outer loop index. Remember that a proper factor will leave no remainder after division.
Part 4 – Code Analysis
Read the program on the separate handout and determine what it will do when executed. Write a brief description of its output.
	

import java.util.Scanner;
public class Encoder
{
 public static void main(String[] args)
 {
 System.out.print("Enter a message: ");
 String message = (new Scanner(System.in)).nextLine();
 System.out.println(encode(message));
 }
 public static String encode(String stringIn)
 {
 int alphaOffset;
 char outChar;
 String stringOut = "";
 for (int i=0; i<stringIn.length(); i++)
 {
 char nextChar = stringIn.charAt(i);
 outChar = nextChar;
 if (nextChar >= 'a' && nextChar <= 'z')
 {
 alphaOffset = nextChar - 'a';
 alphaOffset = (alphaOffset + 10) % 26;
 outChar = (char) ('a' + alphaOffset);
 outChar = Character.toUpperCase(outChar);
 }
 if (nextChar >= 'A' && nextChar <= 'Z')
 {
 alphaOffset = nextChar - 'A';
 alphaOffset = (alphaOffset + 20) % 26;
 outChar = (char) ('A' + alphaOffset);
 outChar = Character.toLowerCase(outChar);
 }
 if (nextChar == ' ')
 {
 outChar = (char) ('0' + (int)(Math.random() * 10));
 }
 stringOut = stringOut + outChar;
 }
 return stringOut;
 }
}
