
The Effects of Pair-Programming on Performance in an
Introductory Programming Course

Charlie McDowell and Linda Werner
Computer Science Department

University of California
Santa Cruz, CA 95064

{charlie,linda}@cs.ucsc.edu

Heather Bullock and Julian Fernald
Psychology Department
University of California
Santa Cruz, CA 95064

{hbullock,jfernald}@cats.ucsc.edu

Abstract

The purpose o f this study was to investigate the effects o f
pair-programming on student performance in an
introductory programming class. Data was collected from
approximately 600 students who either completed
programming assignments with a partner or programmed
independently. Students who programmed in pairs
produced better programs, completed the course at higher
rates, and performed about as well on the final exam as
students who programmed independently. Our findings
suggest that collaboration is an effective pedagogical tool
for teaching introductory programming.

1. I n t r o d u c t i o n

In the academic literature, cooperative or collaborative
learning models involve two or more individuals taking
turns helping one another learn information [1]. The
consensus from numerous field and laboratory
investigations is that academic achievement (i.e.,
performance on a test) is enhanced when an individual
learns information with others as opposed to when she or
he is alone [2, 3, 4].

Although collaboration has been employed in some
software development tasks, computer programming has
traditionally been taught and practiced as a solitary activity
[5, 6, 7, 8, 9]. Over the last decade, however, a number o f
advocates o f collaborative programming have emerged
[10]. In 1991, Flor observed and recorded verbal and non-
verbal exchanges between two programmers working
collaboratively on a software maintenance task. He [11]
found that collaboration allowed each member o f the

Permission to make digital or hard copies o f all or part o f this work for
personal or classroom use is granted without fee provided that copies are
not made or dislributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. T o copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'02, February 27- March 3, 2002, Covington, Kentucky, USA.
Copyright 2002 A C M 1-58113-473-8/02/0002...$5.00.

programming dyad to contribute his unique prior
experience, task relevant knowledge, and perspective to the
problem, resulting in a greater potential for the generation
o f more diverse plans, and ultimately a greater capacity to
solve the problem. His observations both underscore the
effectiveness o f collaborative programming, and provide
evidence for the theory o f distributed cognition which
asserts that "knowledge is commonly socially constructed,
through collaborative efforts toward shared objectives or by
dialogues and challenges brought about by differences in
persons' perspectives" [12].

In 1995 two additional popular books which discussed
collaborative software development practices were
published. In "Constantine on Peopleware," Constantine
reported observing programming pairs at Whitesmith Ltd.
producing code more quickly and with fewer bugs than
would be expected o f independent prograrnrners [13].
During the same year, Coplien, in "Pattern Languages o f
Program Design" suggested the "Developing in Pairs
Organizational Pattern," which argued that organizations
could produce software more efficiently by pairing
designers to work eollaboratively [14].

In recent years, the growth o f extreme programming (XP)
has brought considerable attention to collaborative
programming. Developed over a fifteen year period by
Kent Beck and his colleagues, Ron Jeffries and Ward
Cunningham [15], XP is a computer software development
approach that credits much o f its success to the use o f pair-
programming by all o f their programmers, regardless o f
experience [16]. The pair-programming dimension o f XP
requires that teams o f two programmers work
simultaneously on the same design, algorithm, code, or test
[17, 10]. Sitting shoulder to shoulder at one computer, one
member o f the pair is the "designated driver," and controls
the keyboard and mouse while actively creating code. The
"non-driver" constantly reviews the keyed data in order to
identify tactical and strategic deficiencies, including
erroneous syntax and logic, misspelling, and
implementations that don't map to the design [10]. After a
designated period o f time, the partners reverse their roles,
or work with other co-workers from the same team on

38

another piece of code. Code produced by only one partner
is discarded, or reviewed collaboratively before it is
integrated.

Anecdotal evidence within industry suggests that the
collaborative nature of XP is highly effective. Perhaps the
largest and best-known example o f successful pair-
programming is the Chrysler Comprehensive
Compensation system [18]. Plagued by significant
development problems, Beck and Jeffries restarted the
project using XP programming principles, including the
exclusive use o f pair-programming. Today, the payroll
system pays approximately 10,000 employees and has
2,000 classes and 30,000 methods. The system's success is
largely credited to the reduction in defects and improved
functionality brought about by pair-programming. Despite
the anecdotal evidence, many managers and programmers
who have no experience with collaborative programming
remain skeptical [5], assuming it will be too costly in terms
of scarce programmer hours, or that it will slow
programmers down.

In addition to anecdotal evidence, empirical evidence also
supports the effectiveness of "pair-programming" or
"collaborative learning." Nosek [17] found that students
who programmed in pairs outperformed those who worked
alone. In a related follow-up study, Nosek randomly
assigned 15 full-time experienced programmers to either
work as part o f a two-member team or to work by
themselves on a programming problem for 45 minutes.
Final products were assessed in terms o f readability (e.g.,
the degree to which the problem solving strategy could be
determined from the subjects' work) and functionality (e.g.,
the degree to which the strategy accomplishes the
objectives stated in the problem description). Teams were
found to significantly outperform individual programmers
in terms of functionality and readability, to report greater
satisfaction with the problem-solving process, and to have
greater confidence in their solutions. However, it should be
noted that pair-programming was found to take more total
programmer time than traditional solo programming,
although the elapsed time was less. Pairs required an
average o f 60 programmer-minutes to complete
programming assignments compared to the 42
programmer-minutes used by solo programmers. It should
not be concluded, however, that pair-programming requires
more time. Nosek did not include time spent debugging in
his analysis and this debugging may be expedited in pairs.
This point is particularly salient when code quality is
considered; Nosek found that code produced by individuals
is more error prone than code created by pairs.

Further empirical evidence of the effectiveness o f pair-
programming is provided by an experimental study
conducted by Williams and Kessler at the University of
Utah [19]. In this study, 41 upper level students enrolled in
a course on web design were randomly assigned to
complete four programming projects either independently
or in pairs. During each programming cycle, the 13 solo

programmers completed one program, while the 14 pairs
completed two. Across all four cycles, the collaborators
had a mean 15% fewer defects in their programs than the
individuals. The difference in the rate of defects was
statistically significant (p<.05) for all but the first cycle.
Furthermore, collaborators spent, on average, only 15%
more time completing two projects than the solo
programmers spent completing one, suggesting that pair-
programming is 40-50% faster than programming alone.

In addition to producing more bug free code, pair-
programming appears to enhance the programmers'
enjoyment and confidence. Students practicing
collaborative programming, as well as professional pair
programmers were anonymously surveyed. Over 90%
reported enjoying their jobs more when working in pairs,
and 95% reported feeling more confident in their solutions
[2O].

2. Method

The findings reported in this paper are part of a larger study
funded by the National Science Foundation to assess the
effectiveness o f pair programming on the performance and
retention of women in computer science and related fields.
The results reported here are based on a small subsection of
the data that examined the effects of pair programming on
the quality of the programs produced, and on the extent to
which new programming skills were acquired. We
expected that programmers who worked in pairs would
produce better programs than those who worked
independently. Furthermore, we did not anticipate that pair-
programming would compromise learning to program.

During the 2000-2001 academic year, data was gathered
from approximately 600 students enrolled in four sections
of an introductory programming course at the University o f
California - Santa Cruz designed for CS, ISM and CE
majors. The results reported in this paper examine data
collected from two sections of the course taught by the
same instructor. One o f the two sections reported here
required students to complete programming assignments in
pairs (N=172), while the other required students to write
programs independently~=141). The programming
assignments, lectures, and quizzes were comparable, and
the final exam was identical in both sections. The other two
sections were not considered for the study reported here
because they were taught by different instructors.

In the pairing section taught in fall 2000, students were
required to complete five programming assignments with a
partner. On the first day of class, each student made a list
of three potential partners and was assigned one partner by
the researchers. Pairs were instructed to alternate "driver"
and "nondriver" roles from hour to hour on each
assignment. The importance of working together was
emphasized throughout the quarter and all students
completed a variety o f measures to assess the amount o f
time they spent in each role. In the non-pairing section

39

taught in spring 2001, students were required to
independently complete comparable programming
assignments.

Scores on programming assignments and scores on the
final exam served as the dependent measures.
Programming assignments were scored for functionality
and readability. The final exam assessed students'
knowledge o f programming concepts and their ability to
write new code.

3. Results

3.1 Scores on programming assignments

To compare whether programming scores differed as a
function o f pair-programming experience, analysis o f
variance (ANOVA) was conducted. Among all students
who completed the course, students in the pairing class
scored significantly higher on the programming
assignments (M=86%) than those in the non-pairing class
(_M=67%), F(1, 264)=79.24, t!<.001. That the difference
between the two classes was statistically significant at the
.001 level indicates that we could have expected to obtain
means this far apart less than 1 time in 1,000 just by
chance. In other words, it is highly unlikely that we would
have obtained these results i f pairing didn't actually
influence the quality o f the programs. To review means and
standard deviations, see the first two lines o f Table 1.

T a b l e 1: O v e r a l l)rogram scores

Mean IMed. IStd. dev.

Pairing (all) 86.3%
I

Non-pair ing (all) 67%

Non-pair ing (top half) [77,1%

88% 13.9%

68% 21.4%

80%1 19.6%

There are at least two possible explanations for this
difference. First, it may be that pair-programming enhanced
the quality o f the output resulting in programs that were
more functional and readable. A second possibility is that
the mean programming score in the pairing class was
artificially inflated. Because both members of the pairs
earned the same grade on each of the programming
assignments, overall scores in the class may have simply
reflected the performance o f the stronger student in each
pair. In the most extreme case, it is possible that each o f the
pairs in the pairing section consisted o f one partner in the
top half and one partner in the bot tom half o f the class,
resulting in a mean programming score for the whole class
that only represented the performance of the top 50%. I f
pair-programming did not improve the quality of the
programming assignments, then the scores in the pairing
class should have been approximately equal to the scores of
the strongest 50% of students in the non-pairing class
(assuming students in the two classes were similar to begin
with). To test this, we performed an A N O V A to compare

the programming scores of all students in the pairing class
to the students in the top half o f the non-pairing class
(student ranking was determined by final exam scores).
Overall, the scores from the entire pair-programming
section (M=86%) were significantly higher than the scores
o f the top half o f the non-pairing class (M=77%), F(1,
210)=14.03, 11<.001. Please see bottom line o f Table 1 to
review means. This suggests that the best 50 programs
from a group of 100 students working alone, would not be
as good as the programs produced by 50 pairs o f students.
Thus, it appears that the very process o f working
collaboratively improves the quality o f programs.

3.2 Pair-programming and final exam scores
In addition to the quality o f the programs produced, we also
examined the effect o f pair-programming on students"
conceptual understanding of, and ability to program
independently. Final exam scores in the two classes were
compared using ANOVA. As indicated in Table 2 the mean
exam score in the non-pairing class (M = 75%) was slightly
higher than the mean exam score in the pairing class (M=
73%). This small difference, however, was not statistically
significant, F(1,264)=.46, p >.05, indicating that the
difference between the two classes was not large enough to
attribute to anything other than chance. This finding
suggests that despite the fact that pair -programming results
in improved programs, when used to teach programming it
appears not to affect the extent to which students master
course material and are able to independently apply their
knowledge to new problems.

T a b l e 2: F i n a l e x a m score

Mean Median IStd. dev.
I

Pairing 72.9% 79.2% 21.6%

Non-pairing. 74.6% 78.3% 18.7%

One factor that may have contributed to the overall class
averages on the final exam is the percentage o f students
who did not finish the class. As Table 3 indicates the
percentage of students who finished the final was
dramatically higher in the pairing section (92°/0 vs. 76%).

T a b l e 3: R e t e n t i o n t h r o u g h f ina l e x a m

attempted
class

took final
exam

took final

Pairing 172 159 92.4%

Non-pairing 141 107 75.9%

Fall 1999 I 1681 1421 64.5%

Any number of factors may have contributed to differential
attrition rates. For example, students drop rates m a y be
higher during the spring than fall quarter. It is also possible

40

that students in the non-pairing class hoped to work in pairs
and dropped the spring class in order to take it another
quarter in which pairing might be utilized. Pairing may
increase the likelihood that students complete introductory
programming class. Course completion rates were
significantly higher in the pairing class (fall 2000) than in
the non-pairing section offered in spring 2001,
Z~.(1)= 16.64, 1~ <.001.

For comparative purposes, we also examined course
completion rates in a section of introductory programming
offered in fall 1999. This section, which was taught by the
same instructor as the other two sections and did not
employ pair programming, had a completion rate o f 85%.
Chi-square analyses revealed that the completion rate in the
pair programming section was significantly higher (92%)
than the completion rates in the fall 1999 class, Z~(1)=5.25,
!! <.05. The course completion rates in the two non-pairing
sections did not significantly differ from one another,
Z~(1) =3-66, 1~ >.05.

Regardless of the reasons, the difference in attrition rates
between the fall 2000 pairing class and the spring 2001
non-pairing class may have contributed to the slightly
higher final exam average in the non-pairing class. If
weaker students in the non-pairing class drop, while their
counterparts in the pair-programming class chose to stay,
these "weak" students may have pulled down the overall
exam performance for the class.

In an attempt to compensate for the significant difference in
drop rates, we compared the performance of equal
percentages of students from each o f the two classes (fall
2000 with pair-programming, and spring 2001 without
pair-programming). For the non-pairing class (with higher
attrition), we included all students that took the final exam
(76% of those that attempted the class). For the pairing
class, we included only the "top" 76% of those that
attempted the class. The top 76% were selected in two
ways: (1) by final exam score and (2) by overall class
grade.

Table 4: Final exam score for equal percentages of
students that attemnted the class.

Pairing (all students that
took final)
Pairing (top 76% by grade)
Pairing (top 76% by final)

Non-pairing (all students
that took final)

Mean Med.

72.9% 79.2%

82.5% 83%
82.7% 83%

74.6% 78.3%

Std. Dev.

21.6%

10.7%

9.8%

18.7%

Not surprisingly, this affected "class performance" on the
final as Table 4 indicates. As previously discussed the
difference between all students in the non-pairing class that
took the final (76% of those who attempted the class) and

all students in the pairing class that took the final (92% of
those that attempted the class) was not significant. On the
other hand, the top 76% of students in the pairing class
scored significantly higher on the final (..M_= 83%) than
students in the non-pairing class (_M_ = 75%) regardless of
which method was used to select the top 76%
[F(1,239)=15.44, t~ <.001 and F(I, 237)=14.21, !~ <.001 for
top 76% based on final and top 76% based on grade,
respectively]. Of course, we recognize that there are many
reasons why students drop a course other than poor
performance, but the current findings are provocative.

4. Conclusion
It appears plausible that as a result o f pair-programming,
students that might otherwise have dropped the course,
completed the course. It also appears that the programs of
even the better students benefited from pair-programming.
This is consistent with collaborative learning research,
which shows that academic achievement is enhanced when
an individual learns information with others.

We remain optimistic that pair-programming can be used
effectively in an introductory programming class. The data
suggest that students who work in pairs produce better
programs. Furthermore, they perform comparably on
exams (when not adjusted for varying attrition rates), and
possibly significantly better (when adjusted for attrition
rates) on a final exam, to students required to program
individually.

Acknowledgments
The authors wish to thank Jennifer Bevan, Tristan Thomte,
and Wendy Williams for their assistance with data
collection, entry, and management, and Scott Brandt, and
Alex Pang for allowing us to collect data for this study
from their winter sections o f UCSC's introductory
programming course. This work was partially funded by a
National Science Foundation grant, EIA-0089989. Any
opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

References
1. E .M. Horn, W. G. Collier, J. A. Oxford, C. F. Bond,

and D. F. Dansereu, "Individual Differences in Dyadic
Cooperative Learning," Journal of Educational
Psychology, 90(1), pages 153-160, 1998.

2. A. M. O'Donnell and D. F. Dansereu, "Scripted
Cooperation in Student Dyads: A Method for
Analyzing and Enhancing Academic Learning and
Performance," in R. Hartz-Lazarowitz and N. Miller
(Eds.) Interactions in Cooperative Groups: The
Theoretical Anatomy of Group Learning, pages 120-
141, London: Cambridge University Press, 1992.

41

3. R.E. Slavin Research on Cooperative Learning and
Achievement: When We Know, What We Need to
Know," Contemporary Educational Psychology, 21,
pages 43-69, 1996.

4. S. Totten, T. Sills, A.. Digby, and P. Russ. Cooperative
Learning. New York: Garland, 1991.

5. A. Cockburn and L. Williams, "The Costs and Benefits
of Pair Programming," in Extreme Programming
Examined, Addison Wesley-Longman, 2001.

6. M. E. Fagan, "Advances in Software Inspections,"
IEEE Transactions on Software Engineering, 12(7),
pages 744-751, July 1986.

7. V.R. Basili, S. Green, O.Laitenburger, F. Lanubile, F.
Shull, S. Sorumgard, and M. Zelkowitz, "The
Empirical Investigation of Perspective-Based
Reading," Journal of Empirical Software Engineering,
1(2), pages 133-164, 1996.

8. J .C . Schlimmer, J. B. Fletcher, and L. A. Hermens,
"Team-Oriented Software Practicum," IEEE
Transactions on Education, 37(2), pages 212-220,
May 1994.

9. C. Sauer, D. R. Jeffrey, L. Land, and P. Yetton, "The
Effectiveness of Software Development Technical
Review: A Behaviorally Motivated Program of
Research," IEEE Transactions on Software
Engineering, 26(1), pages 1-14, Jan. 2000.

10. L. A. Williams and R. R. Kessler, "The Effects of
'Pair-Pressure' and 'Pair-Learning' on Software
Engineering Education," Proceedings of Thirteenth
Conference on Software Engineering Education and
Training, pages 59-65, March 2000.

11. N. V. Flor and E. L. Hutchins, "Analyzing Distributed
Cognition in Software Teams: A Case Study of Team
Programming During Perfective Software
Maintenance," presented at Empirical Studies of
Programmers: Fourth Workshop, 1991.

12. G. Salomon. Distributed Cognitions: Psychological
and Educational Considerations. Cambridge:
Cambridge Press, 1993.

13. L. L. Constantine. Constantine on Peopleware,
Englewood Cliffs, N J: Yourdon Press, 1995.

14. J. O. Coplien, "A Development Process Generative
Pattern Language," in Pattern Languages of Program
Design, J. O. Coplien and D. C. Schmidt, Ed. Reading
Mass: Addison-Wesley, pages 183-237, 1995.

15. K. Beck. Extreme Programming Explained: Embrace
Change. Reading, Mass: Addison-Wesley, 2000.

16. L. Williams, R. A. Kessler, W. Cunningham, and R.
Jeffries, "Strengthening the Case for Pair-
Programming," IEEE Software, July/Aug. 2000.

17. J. T. Nosek, "The Case for Collaborative
Programming," Communications of the ACM, pages
105-108, 1998.

18. A. Anderson, R. Beattie, K. Beck et al., "Chrysler
Goes to Extremes," Distributed Computing, pages 24-
28, Oct. 1998.

19. L. Williams and R. R. Kessler, "Experimenting with
Industry' s 'Pair-Programming' Model in the Computer
Science Classroom," Journal on SW Engineering
Education, Dec. 2000.

20. L. Williams. Pair Programming Questionnaire. 2000.
Can be found at
http://collaboration.csc.ncsu.edu/questionnaire/questio
nnaire.htm.

42

