CS139 – Algorithm Development

Game of Pig Case Study

 PA3 problem...An approach to solving it.

1. Use what is provided. PigPlayer and PigDice both contain methods that will help us with the project. If we understand them, we will not rewrite those methods in PigPlayer. So, step one is to read and understand what each object’s role in the game is and what each object will do.

2. Then begin with the shell that is provided. For simple things fill them out. For complex, take some time to design.

Coding

1. Starting with variables. I know that I will need to work with turn points in this class. So, I define a constant to help with later work as follows.

 Instance variables

 private PigPlayer human;
 private PigPlayer computer;

 Class constants
 private static final int COMP_POINTS = 20; // points to have computer switch

The constant is static because we only need one version (it’s constant and does not change) no matter how many games we play. The static keyword means that there is one copy of the attribute regardless of how many instances of the class are created. We then call them class attributes (constants or variables) instead of instance constants or variables.

The constructor then is built to initialize our PigPlayer objects.

public PigGame (PigPlayer humanArg, PigPlayer computerArg)
{
 this.human = humanArg;
 this.computer = computerArg;

} // method PigGame (constructor)

play is provided. So far, I will keep that as is since it has the basics. Clearly, showGreeting and showWinner are easy methods. They simply print the beginning messages and ending messages. playTheGame is the complex method.

public void play()
{
 PigPlayer winner;

 showGreeting();
 winner = playTheGame();
 showWinner(winner);

} // method play

Show greeting is an easy method that simply prints out the required greeting. I don't want to get bogged down at this point with the exact wording, so I fill it in like this:

 public void showGreeting()
 {
 System.out.println("Welome....\n");
 System.out.println("Rules....\n");
 }

showWinner is an easy method that simply prints the name of the player. I fill that one out too. I can use the variable a, which is a PigPlayer object in my println because the toString returns the name of the player.

 public void showWinner(PigPlayer a)
 {
 System.out.println("\nThe Winner is: " + a);
 }

Now for the game. The playTheGame method requires that we start with the human player, then alternate turns. We also must help the computer to “play nice” and turn over the dice after it has reached 20 points or more. We also have to ask the human player whether or not they want to continue. In addition, we need to keep track of who has won and also if a player has reached snake eyes. How do we do this? First I look for already written methods.

· Take a turn – PigPlayer has rollDice which returns true if they can keep going or false if they roll snake eyes. This will allow the game to decide if snake eyes has occurred. This method also tracks the scores that are contained inside of the Player class.

· Computer to turn over dice – PigPlayer has a getTurnScore which will help us to make sure that the computer has not reached 20 points. I’ll also use this to print turn details, but I’m not worrying about printing detail for now.

· Keeping track of who has won – PigPlayer has a hasWon method which returns true if the player has won. I will use this also.

· It looks like the rest will need to be worked out in PigGame. So, my first pass pseudo code looks something like this.

 public PigPlayer playTheGame()
 {
 PigPlayer winner;

 // do the following two steps until one player has won

 // while the human has not had snake eyes nor won nor chooses to quit,
 // have the human take a turn

 // while the computer has not had snake eyes, nor > limit, nor won,
 // have the computer take a turn

 return new PigPlayer(winner);
 }

So, we will have two loop structures nested within an overall loop. The outer loop ends when either player wins, so we will probably need a decision to prevent the computer from taking a turn if the player has won.

I choose a do loop for the outer loop since we must execute our loop at least one time. I’ll use a do while loop for the human player since if we reach that part, the human gets to make at least one turn and a while loop for the computer since we must also make sure we don’t execute the loop if the human has won. Each turn will be a method to simply take the turn. So my playTheGame looks like….

public PigPlayer playTheGame()
 {
 PigPlayer winner;
 boolean goAgain; // controls the turn loops

 goAgain = true; // we assume we go unless we are told otherwise
 winner = null; // make the compiler happy

 // do the following two steps until one player has won
 do
 {
 // while the human has not had snake eyes nor won nor quits,
 // have the human take a turn
 do
 {
 goAgain = takeHumanTurn();
 if (human.hasWon())
 winner = human;

 } while (goAgain && !human.hasWon());

 goAgain = true; // reset for the computer

 // while the computer has not had snake eyes, nor > limit, nor won,
 // have the computer take a turn

 while ((!human.hasWon() && !computer.hasWon() && goAgain)
 {
 goAgain = takeComputerTurn();
 if (computer.hasWon())
 winner = computer;
 }

 goAgain = true;

 } while (!human.hasWon() && !comupter.hasWon());

 return new PigPlayer(winner);
 }

I decided that I needed a flag, goAgain, to simplify the conditions. I could have used the methods themselves throughout to determine all of the control, but the flag simplified the conditions and they read cleanly. goAgain would be used by both players, so in between turns, it must be reset.

The playTheGame method, then is all about controlling the game play. The detail of the individual turns is abstracted here. The turn detail will be other methods. The only thing I have to worry about in those methods is that they return true if the player has an option to continue or false otherwise. And inside the method, we are doing one dice roll.

So, now, let us focus on the human turn.

The following design (in pseudo code as comments) shows my thinking about what must happen in this method.

 /** takeHumanTurn is a method that will take one turn for a human player.
 *
 * the only conditions under which a player cannot take a turn is a

 * roll of snake eyes or choosing to hold the dice
 *
 * @return true if the player can take another turn, false otherwise.
 */
 private boolean takeHumanTurn()
 {
 boolean result;

 human.resetTurnScore;

 // ask if they want to hold the dice

 // roll the dice and get the result

 return result;
 }

We know we must reset the turnScore each time based on the documentation. That will be first. We must ask the human if they want to roll and if so roll the dice and get the result. The result will be whether or not they got snake eyes. A detail in this is printing of the turn points. Since this will be the same for both human and computer, I will push that into another method. And since we must validate the hold the dice question, I will also push that into another method.

So my final method will look something like this.

private boolean takeHumanTurn()
 {
 boolean result;
 boolean hold;

 human.resetTurnScore;

 // ask if they want to hold the dice
 hold = holdDice();

 // roll the dice and get the result
 if (!hold)
 {
 result = human.rollDice();
 printResult(human); // must pass object to know who's result to print
 }
 else
 result = false; // signal to quit

 return result;
 }
I now review my status and realize that before and after the turn, I must show the current standing for this player. Where should that go?

I look at the playTheGame method and see that I could add it before and after the turn loop. But that makes the playTheGame method more complex. Maybe I should put the whole turn into takeHumanTurn and simplify playTheGame. Here is what takeHumanTurn would look like if I do that.

private void takeHumanTurn()
{
 boolean result;
 boolean hold;

 // reset turn score to 0
 human.resetTurnScore();

 printStatus(human);

 // loop until player rolls snake eyes or gives up the dice
 do
 {
 hold = holdDice();

 // only roll if person wants to roll
 if (!hold)
 {
 // roll the dice and get the result
 result = human.rollDice();
 printResult(human); // must pass object to know whose result to print
 }
 else
 result = false; // signal to quit

 } while (result && !human.hasWon() && !hold);

 // see if we left because of a winner
 if (human.hasWon())
 winner = human;

 printStatus(human);
}

Notice that by self-containing the turn, we don’t have to return anything to the game. We still use the winner to determine if the computer takes a turn.

And our primary playTheGame method looks like this.

public PigPlayer playTheGame()
{
 PigPlayer winner;
 boolean goAgain; // controls the turn loops

 goAgain = true; // we assume we go unless we are told otherwise
 winner = null; // make the compiler happy

 // do the following two steps until one player has won
 do
 {
 // have the human take their turn
 takeHumanTurn();

 // have the computer take its turn

 if(!human.hasWon())
 takeComputerTurn();

 } while (!human.hasWon() && !comupter.hasWon());

 return winner;
}

So now we must finish the computer player turn. It will parallel the human except that we don’t ask it to hold and we must look for the number of turn points. While there is some duplication in code, there is enough difference to have this method separate. Adding in conditions for each player would make the task more complex and difficult.

private void takeComputerTurn()
{
 boolean result;

 // reset turn score to 0
 computer.resetTurnScore();

 // prints the beginning status
 printStatus(computer);

 // loop until player rolls snake eyes or has a turn score >= 20
 while (result && getTurnScore() < COMP_POINTS)
 {
 // roll the dice and get the result
 result = computer.rollDice();
 printResult(computer); // must pass object to know whose result to print
 }

 // see if we left because of a winner
 if (computer.hasWon())
 winner = computer;

 // end turn by printing status
 printStatus(computer);

}

At this point, our overall flow is complete. We still don’t have all the nice output put together, but who cares at this point. We also are not actually prompting the user for the rolls. But, we should now test. So, to accomplish this, I will stub out the print methods to actually do printing of something to show what we are doing. I will also do a very simple read of the continue message. Remaining methods are printStatus, printResult, and holdDice.

I do need to print most of what each of the print methods print, but at this point I’m printing what I need to debug and not what I need to produce a nice final output. And as I work on holdDice, I realize that I will need a Scanner. Since it is only in one method, I would normally define it locally, but we are really dealing with only one keyboard and it represents the physical keyboard object, so I am going to make it a static constant attribute.

I add the following methods to use for testing (and will modify in the final version).

 private void printResult(PigPlayer player)
 {
 System.out.println("Roll " + player.getDice() + "\tTurn " +

 player.getTurnScore() +
 "\tTotal " + player.getTotalScore() + "\t Won" player.hasWon());
 }

 private void printResult(PigPlayer player)
 {
 System.out.println(player + "\tTotal: " + player.getTotalScore());
 }

 private boolean holdDice();
 {
 String hold;

 System.out.print("Hold: ");
 hold = kb.next();

 if (hold.equalsIgnoreCase("Y")
 hold = true;
 else
 hold = false;

 return hold;
 }

 Notice that I am not worrying about testing the validity of the values. At this point, I am going quick and dirty to test my flow.

The compile has turned up one logic flaw (and a myriad of typos). I had the winner set at the turn level (inside of each person’s turn), but it was declared inside of playTheGame. So, rather than making another attribute (global variable), I find that I can easily determine the winner there, so remove the winner assignment from the individual turn methods and pass it back to playTheGame.

Now I test. I first test the human, by answering y to every hold question. I check that the roll is okay, that the turn total and overall total are okay. They should be…I did not write them. I also look to see if we take turns appropriately. And I look for snake eyes behavior and ending the game. Here is an example of part of a test run..I don’t care exactly how it looks now…I am most interested in the behavior and reviewing the values of the dice and totals.

ÏÏ§Ï
ÏÏ§ÏWelome....
ÏÏ§Ï
ÏÏ§ÏRules....
ÏÏ§Ï
ÏÏ§ÏHuman Total: 0
¼¼§ÏHold: y
ÏÏ§ÏHuman Total: 0
ÏÏ§ÏComputer Total: 0
ÏÏ§ÏRoll 3, 1 Turn 4 Total 4 Wonfalse
ÏÏ§ÏRoll 3, 6 Turn 13 Total 13 Wonfalse
ÏÏ§ÏRoll 6, 5 Turn 24 Total 24 Wonfalse
ÏÏ§ÏComputer Total: 24
ÏÏ§ÏHuman Total: 0
¼¼§ÏHold: n
ÏÏ§ÏRoll 1, 3 Turn 4 Total 4 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 6, 5 Turn 15 Total 15 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 5, 5 Turn 35 Total 35 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 5, 4 Turn 44 Total 44 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 4, 1 Turn 49 Total 49 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 6, 1 Turn 56 Total 56 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 1, 4 Turn 61 Total 61 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 4, 4 Turn 77 Total 77 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 2, 3 Turn 82 Total 82 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 6, 2 Turn 90 Total 90 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 5, 1 Turn 96 Total 96 Wonfalse
¼¼§ÏHold: n
ÏÏ§ÏRoll 1, 1 Turn 0 Total 0 Wonfalse
ÏÏ§ÏHuman Total: 0
ÏÏ§ÏComputer Total: 24
ÏÏ§ÏRoll 6, 4 Turn 10 Total 34 Wonfalse
ÏÏ§ÏRoll 1, 3 Turn 14 Total 38 Wonfalse
ÏÏ§ÏRoll 5, 3 Turn 22 Total 46 Wonfalse
ÏÏ§ÏComputer Total: 46
ÏÏ§ÏHuman Total: 0
¼¼ÏÏHold:

Note, I did not finish the game here. But I do test to be sure that we finish at the right points.

When I am sure that all is working well (and I have corrected my mistakes) I can now validate the hold message. This is a minor task, a simple loop and error message.

Finally, I make sure that the output conforms to specifications. Since most of the output is reasonable, this is another minor task…simply look for the verbiage to use, make the final output look readable and I am done with the coding.

For the most part, I have documented as I have gone along, but since I have changed a few methods, I also go back and review the documentation of my methods. If they need changing, I will need to make the change. Also, in my print methods (since I wanted to test) I just wrote those quick and dirty…I need to fill those in.

My final code PigGame.java(and the original source code for Pig, PigPlayer and PigDice).

