PA4 – Putting it all together; classes, interfaces, and collections

Due: Thursday April 26, by 10:30 pm… Late programs will NOT be accepted.
Folder with printout and sample dialog (from JGRASP), due on Friday.

ADAMS – no later than 1pm on Friday (April 27)

HARRIS – no later than 4pm on Friday (April 27)

BONUS – Students completing their assignment and turning their folder in to their professor by noon on Wednesday will receive a 10% bonus on this PA.
Background
There are a lot of people associated with JMU. There are students, faculty, staff people, who perform services for the school. Your task is to create an application which will allow a user to enter data for these entities and to create payments to the persons who should be paid. A menu will allow us to create these entities as needed and perform the other tests.
Tasks:

Your application driver should:

Prompt the user with a menu of options, which will include:

1. Add new student

2. Add new student worker

3. Add new faculty member

4. Add new hourly staff person

5. Add new salary staff person

6. Enter hours for each hourly worker.
7. Create payroll report – All employees sorted in ascending order by name
8. Display all Persons in ascending order by name

9. Person search

10. Exit application

A menu simply displays a set of options and corresponding codes (or numbers). These codes will cause the driver to call a method (such as addNewStudent()). Once one action has completed, the menu is redisplayed and the application waits until the next choice is entered. You must error check for bad values (either wrong type or wrong values) and you will exit the application when the Exit option is taken.
You will be using two data structures, a Vector of Payables and a Vector of People. NOTE: The Vectors contain pointers to a single object. Your Vectors must be “type-safe”.
For each of these options:

· You must use appropriate exception handlers in case data of the wrong data type is entered for any of the menu options below.
· Add new student – Prompt for the data for a student. Error checking would include verifying that the entered GPA is between 0.0 and 4.0 inclusive.
· Add new student worker – This would enable the user to enter all pertinent data for a Student, plus the specific data needed for a worker. See below. Error checking would include hourly rate between $0.00 and $15.00.
· Add new faculty member – This would enable the user to enter new faculty. Error checking should include checking that the salary is between 20,000 and 100,000 inclusively.
· Add new hourly staff person – This will enable the user to enter new hourly workers. All fields for a staff person should be obtained as well as the specific data needed to produce payments. Error checking would include the hourly rate being between $6.15 and $35.00.
· Add new salary staff person – This will enable the user to enter new salaried staff persons. All field for a staff person would be obtained as well as the specific data needed to produce payments. Error checking would include the monthly salary ranging from $1000 - $10,000.
· Enter hours for each hourly workers – This would enable the user to enter new hours for the hourly workers. Any workers of hourly or student worker type should be displayed and the hours put in for each. Hours may be between 0 and 90.
· Create payroll report –Each hourly worker will be displayed with his/her pay for this time period.
· Display all Persons – Should list the pertinent information for each person. (Hint toString).
· Person search – Given a name, the search should return all of the information about the person or a message indicating that the person does not exist. (Hint: Use toString)

· Exit application. (Hint: Do NOT use System.exit()).
Detail of the Classes used by the driver

Create an abstract Person class, which will contain basic identifying information for people. The Person class must contain a last name, first name, telephoneNumber and emailAddress.
Create the following classes that inherit from Person:

Student: Attributes include major, minor, and GPA.

Faculty: Additional attributes include annual salary, rank, department.

Staff: Additional attributes include hourly or salary(maybe a code) and department. Staff is an abstract class.

There is a subclass of Student called StudentWorker which includes the field of department, hourly rate, and hours.

There are two subclasses of Staff, Hourly and Salary.

Hourly contains the additional attributes of rate and hours. Salary contains the additional attribute, monthly salary.
Finally, there is an interface, Payable which contains two methods, getPay() and getType(). All of the classes which reflect workers, Faculty, StudentWorker, Hourly, and Salary must implement the Payable interface.

Payroll calculations

All calculations are based on a 24 pay period year.

Faculty – annual salary / 24.

Salary Staff – monthly salary / 2

Hourly – hourly rate * number of hours
Behaviors Required (Methods)

All classes must include a toString method.

All classes must include set and get methods appropriate to the attributes.

All classes must include a default constructor and an explicit value constructor. The explicit value constructors include all required elements except for the hours for hourly workers.

All error checking must display the offending value and what it represents (like “GPA: 5.0 is incorrect, please correct.”) For each bad value, you must re-prompt until you get a valid value.

Hint:

Design first. Decide what is needed in the superclasses and then what new methods or attributes are required in the sub classes.

Design first. Write stubs to test your driver, then implement each of the classes testing after each class OR write the super class and test, the sub classes and test, etc.

Your application should be self explanatory. Do not leave the user guessing about what they should do to enter data and run a payroll listing.

You may use GUI or JOptionPane entry if you prefer. It is not necessary…you may also use strictly text based.

Deliverables:

You must include your application listings and a sample of your dialog testing each of the menu options. If you use GUI, you must include a list of all of the input data that you used for your test.

