Lab: Experimenting with Polymorphism through Inheritance

3.3. What output was generated?

This document has 18 words and 2 lines

George is a little monkey, and all monkeys are curious.

But no monkey is as curious as George.

3.4. Is the output correct?

Yes.

3.6. What output was generated?

This document has 18 words and 2 lines

George is a little

monkey, and all

monkeys are

curious.

But no

monkey is as curious

as George.

3.7. What is wrong with the output?

There are more than two lines in the output.

3.8. Why is the output incorrect? (Hint: Add output statements that will help you debug the getLineCount() method.)

The getLineCount() method uses newline characters to determine the number of lines. Formatted document breaks the lines up not at the newlines but where the line will cross the maximum width of the line. It has more lines than Document.

4.3. What compile-time errors are generated and why?

FormattedDocument.java:50: text has private access in Document

tokenizer = new StringTokenizer(text, " ");

 ^

FormattedDocument is trying to access the attribute, text directly, but the visibility is private...restricted to Document methods only.

4.5. What did you do to fix the problem?

In place of using the attribute, text, directly, I replaced it with a call to super.getText() which has public visibility and returns a String representing the text.

4.7. What output is generated?

This document has 18 words and 2 lines

George is a little

monkey, and all

monkeys are

curious.

But no

monkey is as curious

as George.

4.8. Is the output correct?

We still have the problem with the number of lines being incorrect.

5.1. In Driver2, the getDescription() message is sent to the object named formatted. What code is executed as a result (i.e., what class is the code in)?

Since there is no getDescription() method in FormattedDocument, the getDescription of the parent class, Document, is used.

5.2. Continuing with this same example, the getDescription() method sends the message getLineCount() to this (object). What code is executed as a result? Why?

Again, since there is no getLineCount() method in FormattedDocument (which is the class of this object), the getLineCount() method of Document is used.

6.2. Explain the changes.

The new version of getLineCount() gets the text from the calling object. This means that for FormattedDocument, it will get the text with the extra new line characters added in.

6.3. In Driver2, the getText() message is sent to the object named formatted. What code is executed as a result? Why?

The code in the FormattedDocument class, since formatted is an object of that class.

6.4. In Driver2, the getDescription() message is sent to the object named formatted. What code is executed as a result (i.e., what class is the code in)?

Since there is no getDescription() method in FormattedDocument, the code is executed from the parent class, Document.

6.5. Continuing with this same example, the getDescription() method sends the message getLineCount() to this. What code is executed?

Since this is an object of the FormattedDocument class, the call to getLineCount() in getDescription is the getLineCount() method in the FormattedDocument class.

6.6. Continuing with this example, the new version of getLineCount() sends the getText() message to this. What code is executed as a result? Why?

Again, this is a FormattedDocument object, so the getText() of FormattedDocument is executed.

6.8. What output is generated?

This document has 18 words and 7 lines

George is a little

monkey, and all

monkeys are

curious.

But no

monkey is as curious

as George.

6.9. Is the output correct?

Yes.

6.11. What output is generated?

This document has 18 words and 2 lines

George is a little monkey, and all monkeys are curious.

But no monkey is as curious as George.

6.12. Is the output correct?

Yes.
