Lab: Experimenting with Accessibility/Visibility

3.2. What output was generated?

Contains 18 word(s).

George is a little monkey, and all monkeys are curious. But no monkey is as curious as George.

3.5. What error was generated? Why?

Driver.java:24: incompatible types

found : java.lang.String

required: Document

doc = new String(text);

 ^

doc was declared as a Document object, but we are trying to apply a String constructor to it.

3.8. What error was generated? Why?

Driver.java:24: cannot find symbol

symbol : constructor FormattedDocument(java.lang.String)

location: class FormattedDocument

doc = new FormattedDocument(text);

 ^

doc can be instantiated as a FormattedDocument, but it does not have a constructor that takes in a single String parameter.

3.9. Does the parent class of FormattedDocument have a constructor with a single String parameter?

See 3.8.

3.10. Does the FormattedDocument class inherit constructors from its parent?

No.

3.13. Why did it compile even though there appear to be

 incompatible types?

FormattedDocument is a child of the Document class. Therefore, a FormattedDocument is a Document and can be instantiated for a variable of the Document type.

3.15. What output was generated?

This document has 18 words and at least 4 lines.

George is a little

monkey and all

monkeys are curious

But no monkey is as

curious as George

3.16. Why were the getDescription() and getText() methods in the FormattedDocument class used even though doc is declared to be a Document?

At run-time, the object's class is determined by its instantiation, not by its declaration. So even though it was declared as a Document, it was a FormattedDocument object.

3.17. The getText() method in the FormattedDocument class contains the line temp = super.getText();. Explain this line of code.

This line goes to the parent class and executes the getText() method found there before it executes the rest of the getText() method.

3.20. What output/error message was generated and why?

Got a stack overflow error. Since getText is in the FormattedDocument class, without the call directly to the parent, we simply execute the getText again, which results in infinite recursion.

4.3. Why are no error messages generated?

Document uses the getDelimiters, but since it is within its own class, changing the visibility to private will have no effect.

4.5. What error is generated and why?

FormattedDocument.java:78: getDelimiters() has private access in Document

delim = super.getDelimiters();

 ^

FormattedDocument is a child, but children do not have direct access to private methods or attributes in the parent.

4.8. Why are no errors generated?

Since the child is accessing the getDelimiters and not Driver, the access level of protected allows the child to make use of that method. It is visible to the child.

4.9. What's the difference between the public version

 and the protected version? Which is better? Why?

The public version would enable Driver to use the method. In this case, protected is better since it helps FormattedDocument do its work, but is really only required within the Document family of classes.

4.11. In this case, which version is better? Why?

If the getWordCount method were intended for public use, this visibility would prevent such use, but as it stands, since the FormattedDocument class is the only class to use it, this works.

4.13. What changes can you now make to the FormattedDocument class? (Hint: Think about how the FormattedDocument class accesses these attributes.)
You can now access these attributes directly in FormattedDocument.
4.14. Do you like these changes? Why or why not?

These attributes are important to FormattedDocument doing its job which is to reformat the text in a different way. Direct access can make that easier while still protecting those attributes from outside unintended update. These attributes are a part of any FormattedDocument and any changes that FormattedDocument might make should still conform to its need for this data and its use of this data.
4.15. Now that the delimiters attribute is protected, do you still need the getDelimiters() method?
No since the general users of these classes should not need the delimiters.

4.16. Should either the getDescription() or getText() methods in the Document

 class be protected? Why or why not?
No. They may be needed by other classes trying to use these services.

