3. Using a Simple Enumerated Type:

 This part of the lab will help you see some of the

 shortcomings of simple enumerated types.

 1. Open Example1.java in the editor.

 2. Add a declaration of a double variable named avg.

 3. What did you add?

double avg; // to the main method

 4. Add a declaration of two LetterGrade variables named

 cs139 and cs239.

 5. What did you add?

LetterGrade cs139, cs239;

 6. Assign the grade B+ to cs139 and the grade B to

 cs239 (using the enumerated type LetterGrade.

 7. What did you add?

cs139 = LetterGrade.BPLUS;

cs239 = LetterGrade.B;

 8. Add the following:

 System.out.printf("Grade in CS139: %s\n",

formatGrade (cs139));

 System.out.printf("Grade in CS239: %s\n",

formatGrade(cs239));

 System.out.flush();

 9. Compile and execute Example1.java

 10. What output was generated?

 ----jGRASP exec: java Example1

 Grade in CS139: B+

 Grade in CS239: B

 ----jGRASP: operation complete.

 11. Add code that compares the grades cs139 and

 cs239 and outputs either "I did better in CS239 than

 in CS139\n", "I did worse in CS239 than in CS139\n", or "I got the

 same grade in CS239 and CS139\n".

 12. What code did you add?

 if(cs139.compareTo(cs239) > 0)

System.out.printf("I did worse in CS239 than in CS139\n");

else if (cs139.compareTo(cs239) < 0)

System.out.printf("I did better in CS239 than in CS139\n");

else

System.out.printf("I got the same grade in CS239 and CS139\n");

 13. Add code that calculates the average grade (in quality points) in

 the two courses (using the pointsGrade() method).

 14. What code did you add?

 avg = (pointsGrade(cs139) + pointsGrade(cs239)) / 2;

 15. Add code that outputs "Average for CS139 and CS239: ", followed by

 the average, followed by "\n".

 16. What code did you add?

System.out.printf("Average for CS139 and CS239 %f\n", avg);

4 Using a More Sophisticated Nnumerated Type:

 This part of the lab will help you understand how you can

 overcome the shortcomings of simple enumerated types by

 adding behaviors.

 1. Delete all .class files

 2. Download LetterGrade.java

 3. Open LetterGrade.java in the editor and make sure

 you understand it.

 4. Open Example2.java in the editor.

 5. Add a toPoints() method to LetterGrade that returns the points attribute.

 6. What code did you add?

/**

 * Method returns the quality point equivalent to this grade

 *

 * @return The quality points for this LetterGrade

 */

public double toPoints()

{

return this.points;

}

 7. Add a toString() method to LetterGrade

 that returns the symbol attribute.

 8. What code did you add?

/**

 * Method returns the String symbol equivalent to this grade

 *

 * @return The symbol for this LetterGrade

 */

public String toString()

{

return this.symbol;

}

 9. Modify Example2.java so that it outputs the grades in

 the two courses in the same format as in Example1.java.

 10. What code did you add?

 System.out.printf("Grade in CS139: %s\n",

formatGrade (cs139));

 System.out.printf("Grade in CS239: %s\n",

formatGrade(cs239));

 System.out.flush();

 11. Modify so Example2.java that it calculates the

 average and outputs it in the same format as in

 Example1.java.

 12. What code did you add?

 avg = (cs139.toPoints() + cs239.toPoints()) / 2;

 System.out.printf("Average for CS139 and CS239 %f\n", avg);

 13. Modify Example2.java so that it uses an array of two

 LetterGrade objects rather than the variables

 cs139 and cs239.

 14. What changes did you make?

 Replaced cs139 with cs[0] and cs239 with cs[1]. Also changed the declaration

 to LetterGrade[] cs; and added an instantiation of the array, cs = new LetterGrade[2];

5 Looking Ahead:

 This part of the lab will get you to start thinking about a topic

 you will study in the future. help you understand how you can

 overcome the shortcomings of simple enumerated types by adding

 behaviors.

 1. Copy Example2.java to Example3.java.

 2. Open Example3.java in the editor.

 3. Change Example3.java so that it uses an array of 1000 LetterGrade objects, only assigning
values to elements 139 and 239.

 4. What changes did you make?

Changed the instantiation of cs to 1000 elements.

Used cs[139] and cs[239] in lieu of cs[0] and cs[1].
 5. Do you think the approach you used in Example3.java is a good or bad? Why?

The code is more self-documenting. Element 139 refers to CS139 and 239 refers to CS239. However, it uses a lot of unnecessary space.

I did see the use of constants for this one, where CS139 was given the value 0 and CS239 was given the value of 1. This is also self-documenting, but as we will see later, the mapping approach has some value in some kinds of data manipulation.
