Lab: Working with Arithmetic Operators

(original lab from Dr. Arch Harris’s class)

Purpose: Many programmers are required to correct code that has been created by someone else. Often that requires a simple change; other times you need to find a pesky bug. Before you can correct the program, you must understand what it is doing, then attempt to determine what is not working correctly.

You will build a test suite for this program. You will be testing this program to see if it works, then you will fix the problem(s) encountered. Finally, you will retest the program using the original test suite.

Background: See Schaum’s Chap 1 for further information. This program will read in an expression in postfix notation (the operator follows the operands) and displays it in infix notation (operator in between the two operands).

Example of infix:
1+a

Example of postfix:
1a+

Example of prefix:
+1a (not used in this program)

In addition, this program reads in the operators as hexidecimal (base 16) digits. The hexidecimal digits are:

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

The output of the program is the original expression in infix notation and the result converted to base 10.

For example, 3f+ should result in the line “3 + f = 18”

But, there is a problem. The program is wrong. There are compiler errors as well as logic errors in carrying out this work. Your job today is to correct those errors.

Instructions: You will be working with one other person in the class. You will either be working on Postfix1 or Postfix2 (1/2 of the class will get each). Copy the appropriate program to your N: drive and attempt your correction. Note the code that says:

if (operand1 >= 'a' || operand1 <= 'f')

 operand1Value = 10 + operand1 - 'a';

This is a technique for changing characters into their equivalent integers. See ASCII code table. A char is a representation and an int is an actual number as stored in the corresponding byte. In this example, if ‘f’ were the character its value will be the value of ‘f’ – ‘a’. That result would be 5 (since ‘f’ is 5 higher than ‘a’).

Your tasks-you will have one hour to complete this task, allowing a brief follow-up at the end:

1. Understand the problem.

2. Build a test suite of potential values and the expected result. Use the worksheet provided. (Put both partner’s names on the paper). (Black box test)
3. Compile the program. Take care of any compile problems.

4. Run your test cases against the program. Record your results. Do they match your prediction?

5. Read the code carefully. Try to figure out what it is doing and how it is doing it.

6. Add in any test cases that you need to test branches in the code that are not covered by your original test suite. (White box test)

7. Begin to work through the errors.
8. Continue to test using your test cases. When you have gotten a successful run with all of your test cases raise your hand.

9. To “submit” this lab work, put both partner’s names on the top of the test worksheet. Indicate whether you were working on version 1 or 2.

10. When finished, open up the alternate version of the program. What do you notice? Which version do you think would be easier to work with? Why?

NOTE: This program uses another output class, called Output to output the data in a format which is in common with C. The % signs are placeholders that will take the next parameter following the output string and replace the % with the value of the parameter. The character following the % symbol tells what kind of value is being output. The output statements work correctly. It is the logic of the program that does not.

Second note: Notice the DEBUG constant at the beginning of the program. This constant is used to control whether we are debugging the program or not. By building the debug lines into the code and conditioning those lines by the constant’s value, you can successively test with or without the extra lines. Notice that each debug line gives you a context for where that line is. This is especially important if you are debugging several methods at once or alternate choices in a select statement.
