Name(s):

Problem practice - Inheritance through Abstract Classes

Fill in the chart below with T or F depending on whether or not the characteristic on the
left can be applied to the class type or interface on the top.

characteristic super class sub class abstract class

May only have
abstract methods.

May have one or
more abstract
methods

May have instance
variables

May have class
variables

May have class
constants

May have concrete
methods

May be extended by
another class

May be used to
declare object
reference variables

Given the TwoPartMeasure, Weight, and Length classes from the lab and assuming the following
code, indicate which of the statements if present in main will compile (C) or not compile (X).
Indicate in the space underneath the reason for any statement that will not compile.

*

/
A driver that can be used to test
some aspects of the Length and Weight classes

* %k ¥ X *

@author Nancy Harris
* @version 1.0

*/

public class Driver3

{

/**
* The entry point of the application
*

* @param args The command line arguments
*/

public static void main(String[] args)

{

TwoPartMeasure tpm;
TwoPartMeasure]|] tpmArray;
Length myLength;
Weight myWeight;
int units;

tpmArray = new TwoPartMeasure[3];
myLength = new Length(12, 4);
myWeight = new Weight (125, 3);

// ... more code goes here
}
}
CorX Statement in main
1. tpm = myLength;
2. tpm = new TwoPartMeasure(5, 3);
3. myLength = myWeight;
4. myLength = tpm;
5. tmpArray[0] = myWeight;
6. tmpArray[1] = new Length(3, 4);
7. tmpArray[2] = new TwoPartMeasure(5, 2, true);
8. units = myWeight.smallsPerLarge;
9. myWeight.initializeUnits();
10. units = myLength.toSmall();
11. myWeight.equals(myLength);
12. System.out.println(myWeight);
13. myWeight.changeBy(myLength);
Statement Rationale

If you need more space for explanations, turn to the back.

Given the TwoPartMeasure, Weight, and Length classes, answer the following:

1. Which data members of TwoPartMeasure are “visible” in Weight?

2. Which method members of TwoPartMeasure are “visible” in Weight?

3. Which method members of Weight are “visible” in TwoPartMeasure?

4. If we changed the default constructor of Weight from what is listed in the reference to
this, would this class compile? Why or why not?

/**

* Default Constructor
*/

public Weight()

{

}

this(0, 0, true);

5. If we wanted to create accessor methods for the large and small units, where should they
go (TwoPartMeasure, Weight, Length or some combination)? What would one of the
methods headers look like (large or small)?

public abstract class TwoPartMeasure

{
private int large, sign, small;
protected int smallsPerLarge;
protected String largeUnitsSingular, largeUnitsPlural;
protected String smallUnitsSingular, smallUnitsPlural;

public TwoPartMeasure()

t this (0, 0, true);
;ublic TwoPartMeasure(int large, int small)
{ this(large, small, true);
éublic TwoPartMeasure(int large, int small, boolean positive)
{ this.large = Math.abs(large);

this.small = Math.abs(small);

this.sign = 1;

if (!positive) this.sign = -1;

initializeUnits();
;ublic void changeBy(TwoPartMeasure other)
{

int otherTotal, thisTotal, total;

otherTotal = other.toSmall();
thisTotal = this.toSmall();

total = thisTotal + otherTotal;

large = total / smallsPerlLarge;
small = total % smallsPerLarge;

public boolean equals(TwoPartMeasure other)
{

boolean comparison;

int otherTotal, thisTotal;

thisTotal = this.toSmall();
otherTotal = other.toSmall();

comparison = false;
if (thisTotal == otherTotal) comparison = true;

return comparison;

}
protected abstract void initializeUnits();

private int toSmall()

{
int total;
total = sign * ((large * smallsPerLarge) + small);
return total;
}
public String toString()
{
String s;
s = new String();

"

if (sign < 0) s += "Negative

~e

if (large == 1) s += large + " " + largeUnitsSingular;

else s += large + " " + largeUnitsPlural;

if (small == 1) s += " " + small + " " + smallUnitsSingular;
else s += " " 4+ small + " " + smallUnitsPlural;

return s;

public class Weight extends TwoPartMeasure

{

public Weight()

{
super (0, 0, true);

}

public Weight(int pounds, int ounces)

{
super (pounds, ounces, true);

}

public Weight(int pounds, int ounces, boolean positive)

{
super (pounds, ounces, positive);

protected void initializeUnits()

{
smallsPerLarge = 16;
largeUnitsSingular = "pound";
largeUnitsPlural = "pounds";
smallUnitsSingular = "ounce";
smallUnitsPlural = "ounces";

}

}

public class Weight extends TwoPartMeasure

{
public Weight()
t super (0, 0, true);
}
public Weight(int pounds, int ounces)
{ super (pounds, ounces, true);
}

public Weight(int pounds, int ounces, boolean positive)
{

super (pounds, ounces, positive);

protected void initializeUnits()

{
smallsPerLarge = 16;
largeUnitsSingular = "pound";
largeUnitsPlural = "pounds";
smallUnitsSingular = "ounce";
smallUnitsPlural = "ounces";
}

