CS474 MySQL lab 1 – Manipulating data

02/25/2011


References for this lab and MySQL statements can be found at http://dev.mysql.com/doc/refman/5.0/en/tutorial.html.

Today, you will be working with a database that has already been set up.  Everyone will log in with the same user id and will operate on the same set of tables.  Next lab, you will have your own databases to use and will be building the database from scratch.

Logging in
1. ssh (either putty in windows or ssh in the terminal window in linux) to cs474.cs.jmu.edu.  Use your normal userid and password.  Expand your window to maximum size.

2. At the command prompt, type mysql –u student –p and then press <ENTER>.
This command starts the mysql application using login id student and prompts for a password.

3. Type the password, cs474. This id will give you read access to a single database, cs474lab.   You should see a mysql prompt on your screen. 

Exploring the database – cs474lab
1. The first thing to do is to “use” the correct database.  MySQL statements all end with a semicolon.  So to “use” the cs474lab database, you enter the statement, USE cs474lab; You should see the reply, Database changed.

2. NOTE: the keywords in MySQL are not case sensitive.  use = Use = USE.  A convention used in the literature is to make all keywords in MySQL upper case.

3. The database that we have is the same as the example database from our exam.  There are four tables: Student, Faculty, Class, and Enroll.  These tables contain the sample data as shown in the attached example.  This database has some foreign key constraints…the student and class must exist to create an enrollment and the faculty member must exist before putting them on a class.

4. SHOW TABLES;  This statement provides a list of tables in this db.  Try it.

5. DESCRIBE tablename; This statement shows the definition of the selected table.  Try it.

6. SHOW INDEX FROM tablename; This statement displays the primary keys and foreign keys on a table.  Try it.  What indexes do you see on Enroll?

7. SELECT * FROM tablename; This statement selects all rows all columns from a table.  Try it.

8. SELECT name, department FROM Faculty WHERE rank = ‘Professor’; This statement projects two attributes and selects only those of a professor rank.  Try it.

9. Now write queries to perform the following selections.  Refer to the tutorial or one of the books in the lab if you need help.

	Description of the result set
	What query did you write?

	Display all information for students who have less than 40 credit hours.
	

	Display the enrollment information for student ‘S1001’.
	

	Display all classes that meet on a MWF schedule.  Hint: The LIKE keyword matches strings.  LIKE ‘A%’ matches anything that begins with a capital A.
	

	Display all class numbers where students got a C or worse.
	


Exploring JOINs  

A join lets us join two tables together on a common value.  In SQL, JOIN is a keyword that indicates which two tables should be joined and ON is a keyword that specifies which fields should be joined.  JOIN operations return a result set where corresponding rows must exist in both tables for the row to be selected.

1. SELECT lastName, firstName FROM Student JOIN Enroll ON Student.stuId = Enroll.stuId;  Try it!
2. SELECT lastName, firstName FROM Student, Enroll WHERE Student.stuID = Enroll.stuID; Try it!  Did you have different result sets?  
3. SELECT DISTINCT lastName, firstName FROM Student JOIN Enroll ON Student.stuId = Enroll.stuId; Try it!  How is this version different from the first two?
4. Aren’t you tired of typing Enroll. … and Student. … by now.  I know I am.  Try this version.  SELECT lastName, firstName FROM Student s JOIN Enroll e ON s.stuId = e.stuId;
The JOIN operator joins on the basis of the same value in both tables.  But some applications want us to be able to see the data in one table and matching information in another.  If the data in the second table does not exist for a row in the first, we still want to see it.  We need to then use the LEFT and RIGHT joins.  I generally use a LEFT join which means the first table is the driver; all selected rows from that table are display.  If data also exists in the matched second table, it will display.  

5. SELECT name, department, schedule FROM Faculty f LEFT JOIN Class c ON f.facId = c.facId; What do you see in the schedule column for Prof Smith who teaches in CSC?  

6. Now write queries to perform the following selections.  Refer to the tutorial or one of the books in the lab if you need help.

	Description of the result set
	What query did you write?

	Display a list of student names and ids for students enrolled in ‘ART103A’.
	

	Display a list of student names and courses for courses with no grade.  (Remember NULL?)
	

	Display a list of student names in classes taught by facId ‘F101’.
	

	Display a list of faculty names that are not teaching any classes (as determined by existing in the Class table).
	

	** Display a list of student names in classes taught by any professor in the ‘Art’ department.
	

	*** Display a list of students whose last name is the same as the faculty member’s name.  Display the student id, name, and faculty member’s department.
	


Adding and updating data

Adding data to the db requires the use of the INSERT commands.  An INSERT command includes a list of fields that you are going to insert values for and a list of values that will go into those fields.  So to add a row to the Student table, you would write INSERT INTO Student(stuId, lastName, firstName, major, credits) VALUES (‘S1011’, ‘Jones’, ‘Meg’, ‘CSC’, 10);  DON’T ADD THIS.  After each of the following actions, run a SELECT statement to view the result of your add.

1. Add a new row to the student table for a student of your choosing.  For the stuId, use ‘S30xx’ where xx is your workstation number.

2. Add a new faculty member to the Faculty table for a faculty member of your choosing.  For the facId, use ‘f3xx’ where xx is your workstation number.

3. Add a new Class for this professor in the Class table.  Use any classNumber you like.

4. Add a new Enroll record for the student you created and the class you created.  The grade should be null.

5. Try adding a Class for a professor id that does not exist (like ‘f999’).  What happens?

6. It’s time to give your Student a grade for the course you enrolled him/her for.  For this you need the UPDATE statement.

7. The UPDATE statement has the form of UPDATE tablename SET field1=value1, field2=value2…fieldn=valuen WHERE condition.  So if I wanted to update the last name of professor F110 to Anderson, my statement would look like: UPDATE Faculty SET name=’Anderson’ WHERE facId=’F110’;
8. Update your student grade to any grade that you like.
Deletions (OOOOHHHH, SCARY!)

The deletion statement is used to remove rows from a table.  It takes the form of DELETE FROM tablename WHERE condition;
Safe deletion requires a couple of steps.  One possible step is to back up your table before you do the deletion.  More on backups later.  The other is to use a SELECT query to be sure you are deleting the correct row(s).

1. Add another student using the stuId of ‘S40xx’ where xx is your workstation number. 

2. Select this student from the database an appropriate SELECT statement.  Be sure that it is your student.  

3. Recall the SELECT statement (up arrow) and replace the SELECT * with DELETE FROM.  

4. Execute the query.  How many rows does it say you deleted.  SELECT * from the database to see that your row is gone.

Followup homework – Finish up chapter 6. Feel free to play with this database as you read about other commands.
