Designing classes – A suggested approach

For this activity, select one MANAGER of your team to manage the process. This person should keep the group on track and stop the work at appropriate places in the activity. Select one REPORTER for your team to report back when called upon. Finally, select one RECORDER, whose job it will be to fill in the turn in sheet and turn it into the professor at the end of class.

RECORDER – Take out a clean piece of paper and put the names of each of the team members present at the top of the sheet. Please record both first and last names as some of the class has similar first names. Record answers to each question on the paper and turn it in at the end of the class period.

The following text describes one piece of an application. This is a description for a Fraction class that will be used by other applications.

A fraction is a quotient of one integer divided by another (often indicated by a/b).

The dividend, a, is called the numerator and the divisor, b, is called the denominator.

One can add a fraction to, subtract a fraction from, multiply a fraction by, and divide a fraction by another fraction. The result of each of these operations is another fraction.
The following questions take you through a process of developing a class that is true to the description, and provides appropriate services. Use the whiteboards as a work area. At each SHARE point, finish that step and then stop and we will share your results with the rest of the class.

Identify noun phrases (people, places, things)
1.1. What are the important noun phrases in this textual description? Each of these noun phrases will be attributes of the Fraction class.
1.2. What data type would you use for each?

Identify verb phrases (actions)
2.1. What are the important verb phrases in this textual description? Each of these verb phrases will be methods of the Fraction class.
2.2. What parameters are required by each?

2.3. What is the return type of each?

Build an initial encapsulation (stubbed out class)

SHARE 3.1. Given the analysis above, what would your initial encapsulation be? The encapsulation is the shell of the Fraction class written in Java. It is like stubs only you don’t need to include return types at this point. You do need the attributes and each of the methods identified in 2.2.1. Don’t worry about any other methods (such as a constructor) at this point.

Looking for missing behaviors
4.1. To add and subtract two fractions you must first find a common denominator and convert each to an equivalent fraction with that denominator. Given this observation, what private method would you add?

4.2. All classes should have a toString() method that returns a String representation of an instance. For this class, how should the String be formatted? (Note: Remember to think about the sign of the fraction.)

4.3. Given that Fraction objects are supposed to be immutable, should this class have "set" methods? Why or why not?

4.4. Should this class have accessor (i.e., "get") methods for the numerator and/or denominator? Why or why not?
Looking for missing attributes
SHARE 5.1. Given the discussion of the toString() method above, it would clearly be useful to always use positive integers for the numerator and the denominator and keep a sign attribute. What type should the sign attribute be and what values should it take on? (Hint: Think about how it will be used in the various methods.)

Looking for similar behaviors

6.1. What operation is very similar to addition?

6.2. How would you use the add() method to perform this other operation?

6.3. What operation is very similar to multiplication?

6.4. How would you use the multiply() method to perform this other operation?

Looking for helpful private behaviors
7.1. Given the discussion of the addition method (and its related method) above, what private method would you add?

SHARE 7.2. Given the discussion of the multiplication method (and its related method) above, what private method would you add?

 Identify constructors

8.1. What explicit value constructor should this class certainly contain?

8.2. Do you think this class should contain a default constructor? Why or why not?

Identify class attributes
9.1. One could add the following class constants:

static final int NEGATIVE = -1;
static final int POSITIVE = 1;
Is this is a good idea? Why or why not? If so, should they be public or private?

