Testing and Exceptions

Task 1 – Followup from lab
Given the lab from Monday, what test cases did you put together?
· Legal values and the variety of legal expressions

· Illegal values and the variety of those Strings

· Think about very small and very large cases

· Think about 0, null, and null string.

	String
	int
	double
	What spec were you testing

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Task Exceptions

We have used try/catch blocks that have been thrown by other programs. Today, you will explore (and extend into lab) the notion of creating your own exceptions and throwing exceptions that already exist in the java language libraries. Reference for this session is Gaddis 12.2.

1. A throw statement throws a new exception instance that must be handled by the application or by the JVM virtual exception handler. Given this code from a lab:

/**
 * Calculates the mean of an array
 *
 * @param data The raw data
 * @return The mean of the raw data
 */
 public static double mean(int[] data)
 {
 double result, total;
 total = 0.0;
 for (int i=0; i<data.length; i++)
 {
 total += data[i];
 }
 result = total / data.length;
 return result;
 }

Where is there a potential exception that will be thrown and under what condition?

2. The Signs of Intelligence application had a series of detail records each of which had to be constructed and we used individual values to call the constructor. What if we had a constructor that took in a single String and did all of the work of validating the string and building loading the appropriate variables? How can a constructor communicate that something went wrong in the process?
3. Look at the example, NegativeStartingBalance.java on your worksheet. Notice that it extends the Exception class. What does this mean about the type of exception this is? Is it checked? or unchecked? A class that uses a method that throws this exception will need to do what?

4. When you took in the changes for the Signs of Intelligence tests, we assumed that everything was in the proper format. What kinds of exceptions might you throw if the value of the rows is not correct? In other words, each row in the file should be in the form of W|I,item#,changeAmt? What should a method that parses this line throw?

Example of an exception

/**
 NegativeStartingBalance exceptions are thrown by the
 BankAccount class when a negative starting balance is
 passed to the constructor.
*/

public class NegativeStartingBalance
 extends Exception
{
 /**
 This constructor uses a generic
 error message.
 */

 public NegativeStartingBalance()
 {
 super("Error: Negative starting balance");
 }

 /**
 This constructor specifies the bad starting
 balance in the error message.
 @param The bad starting balance.
 */

 public NegativeStartingBalance(double amount)
 {
 super("Error: Negative starting balance: " +
 amount);
 }
}

Exception class javadocs for the constructors.
Exception

public Exception()

Constructs a new exception with null as its detail message. The cause is not initialized, and may subsequently be initialized by a call to Throwable.initCause(java.lang.Throwable).

Exception

public Exception(String message)

Constructs a new exception with the specified detail message. The cause is not initialized, and may subsequently be initialized by a call to Throwable.initCause(java.lang.Throwable).

Parameters:
message - the detail message. The detail message is saved for later retrieval by the Throwable.getMessage() method.

Exception

public Exception(String message,

 Throwable cause)

Constructs a new exception with the specified detail message and cause.

Note that the detail message associated with cause is not automatically incorporated in this exception's detail message.

Parameters:
message - the detail message (which is saved for later retrieval by the Throwable.getMessage() method).

cause - the cause (which is saved for later retrieval by the Throwable.getCause() method). (A null value is permitted, and indicates that the cause is nonexistent or unknown.)

Since:
1.4

Exception

public Exception(Throwable cause)

Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString()) (which typically contains the class and detail message of cause). This constructor is useful for exceptions that are little more than wrappers for other throwables (for example, PrivilegedActionException).

Parameters:
cause - the cause (which is saved for later retrieval by the Throwable.getCause() method). (A null value is permitted, and indicates that the cause is nonexistent or unknown.)

Since:
1.4

Methods inherited:

	Methods inherited from class java.lang.Throwable

	fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

	Methods inherited from class java.lang.Object

	clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Exception has no methods of its own.
