Recorder Name:________ ______________________

Team members present __

[image: image1.png]Ask Mom for money

Ask Dad for money
v
o Go online and buy
tickets
Get a job
Get paycheck
Go online and buy tickets
Quit job v

v

Members Present: ___

Exploring relational and logical operations.

Objectives

At the end of this exercise, students will:

· Be able to create simple relational expressions

· Understand the role of decisions in algorithms

· Be able to use simple relational expressions in decision structures in Java
Getting ready

1. Coordinator, get one copy of the response sheet for each team member and one Exit Pass for the team.

2. All team members - record your notes on your own response sheet.

Part 1 Initial Activity Practice with relational operators
The following chart shows the relational expressions using each of the relational operators. Fill in the meaning of each in the chart. (You should be able to do this without your book).

	Relational Operator
	Meaning

	x > y
	

	x < y
	

	x >= y
	

	x <= y
	

	x == y
	

	x != y
	

Problem solving with relational operators. Given the variables and the values in the chart below, evaluate each expression and write your result as true or false.

	Variable
	Type
	Value

	bluebird
	int
	25

	monkey
	double
	25.33

	alligator
	int
	73

	petunia
	int
	94

	rose
	double
	125.00

	pheasant
	char
	‘X’

	mushroom
	char
	‘Z’

Expression

Answer

	a. 98 == petunia
	

	b. bluebird >= (int) monkey
	

	c. (petunia + rose) <= (alligator * 3)
	

	d. mushroom < bluebird (hint, this is not invalid)
	

	e. (alligator % 3)!= (rose / 40)
	

	f. bluebird == ((rose * 2) – 225)
	

	g. mushroom >= pheasant
	

	h. petunia – 19 = alligator
	

	i. 16 + ((25 / 5) % 2) > 17
	

	j. ((alligator % 5) / 3) < 0
	

Part 2 Extending the model to code

See the example of decisions in the code below.

 1 public class TestResults
 2 {
 3 public static void main(String[] args)
 4 {
 5 int testScore; // Numeric test score
 6 String input; // To hold the user's input
 7 Scanner kb; // Keyboard Scanner
 8
 9 kb = new Scanner(System.in); // get the Scanner ready
10
11 // Get the numeric test score.
12 System.out.print("Enter your numeric " +
13 "test score and I will tell you the grade: ");
14 testScore = kb.nextInt();
15 System.out.print("\n\n");
16
17 // Display the grade.
18 if (testScore >= 70)
19 System.out.println("Your grade is CR.");
20 else
21 System.out.println("Your grade is NC.");
22 }
23 }
1. In your own words, what is this code doing?

2. How many decision points are in this code?

3. On what line(s) do you find a declaration of a primitive type? What is/are the type(s)?
4. On what line is a primitive variable initialized?

5. List one line on which there is a call to a method? What is the argument to the method call?

6. On what line(s) are objects instantiated? Name one of the objects.
7. If the user enters 70 what will be the result of running this program?
8. The 70 took one branch of the decision. To thoroughly test code, you should test all possible paths through the system. What value would you test to make sure that your code worked for the second branch?
9. What will happen if a user enters an invalid grade (like -456)?

10. What will happen if the user enters something at the keyboard like “A”?
11. Alter the model to prevent the problem in Step 10. Use a default value of 0 if they enter a non numeric value.

Part 3 Compound conditions, the logical operators.

Logical operators ask questions like is A > B OR is B > C. Logical operators let us combine relational operations. The logical operators are listed below:

Truth tables

	&&
	T
	F
	
	||
	T
	F
	
	!
	

	T
	T
	F
	
	T
	T
	T
	
	T
	F

	F
	F
	F
	
	F
	T
	F
	
	F
	T

AND

OR

NOT

Problem solving with logical operators. Given the variables and the values in the chart below, evaluate each expression and write your result as true or false.

Variable Type Value

	variable name
	declared as
	current value

	yes
	boolean
	true

	no
	boolean
	false

	pheasant
	char
	‘X’

	mushroom
	char
	‘Z’

	blue
	char
	‘b’

	red
	char
	‘R’

	code
	char
	‘@’

	monkey
	double
	25.33

	grade
	double
	88.0

	amount
	double
	50.00

	bluebird
	int
	25

	alligator
	int
	88

	petunia
	int
	92

	hiVal
	int
	99

	loVal
	int
	-99

In the order of precedence, the arithmetic operations occur before the relational operators and the logical operators are evaluated last. BOARD – Put answers to all 10 on the board.

1. bluebird * 2 > amount

2. (int) monkey == bluebird

3. petunia < loVal && petunia > hiVal

4. pheasant > mushroom || mushroom > blue || red > code

5. (!yes || !no)== (! (yes && no))

6. yes && (alligator > grade + 5 || amount <= 50)

7. blue > code

8. ! (blue > code) || !(hiVal > loVal)

9. alligator / bluebird == alligator / grade

10. amount > hiVal || amount < loVal

Part 4 Extending the model to code
In Java, you can “nest” if statements. In otherwords, a statement inside of an if or else clause can itself be another if or else. Consider the following code:

import java.util.Scanner;
/**
 This program demonstrates a nested if statement.
**/
public class LoanQualifier
{
 public static void main(String[] args)
 {
 double salary; // Annual salary
 double yearsOnJob; // Years at current job
 Scanner keyboard; // keyboard for input

 keyboard = new Scanner(System.in);
 System.out.print("Enter your annual salary: ");
 salary = keyboard.nextDouble();

 // Get the number of years at the current job.
 System.out.print("\nEnter the number of years at your current job: ");
 yearsOnJob = keyboard.nextDouble();
 System.out.print("\n");

 if (salary >= 30000) (--POINT A
 {
 if (yearsOnJob >= 2)
 {
 System.out.println("You qualify for the loan.");
 }
 else
 {
 System.out.println("You must have " +
 "been on your current job for at least " +
 "two years to qualify.");
 }
 }
 else
 {
 System.out.println("You must earn " +
 "at least $30,000 per year to qualify.");
 }
 }
}

1. In your own words, what is this program doing?

2. For salary = 30000 and years = 2, what is output by the final println to execute in the section beginning with Point A?

3. What other test cases would you use to make sure that only those with at least 30000 in salary and at least 2 years on the job gets qualified for the loan? (Hint: When considering decisions, we want to check boundaries as well as values within the ranges of possibility.)

4. You are maintaining this program for the bank. They have changed the requirement, such that if a person makes less than 30000 but more than 20000 and they have been on the job for 15 years or more they will qualify for the loan. What would you need to change? Write the changed code from point A onward. (Hint: a logical expression might make this job a bit easier.)

Page 1 of 1
3

[image: image1.png]