¢ Cleanroom

— attempt to mathematically-based, scientific engineering
process of software development

— “Cleanroom software engineering yields software that
is correct by mathematically sound design, and
software that is certified by statistically-valid testing” —
SEI

— Objective: achive quality by design rather than through
testing — time is spent in design and verification

» Harlan Mills (Linger, Dyer, Poore), IBM, 1980

* Analogy with electronic component manufacture

» Use of statistical quality control features

* Certified software reliability

 Improved productivity; (near) zero defects at
delivery

* Unit — software use

— can be defined in number of ways based on application

Key Features

» Usage scenarios; statistical modeling
* Incremental development and release

* Separate development and acceptance
testing

* Program proofs; no unit testing

Defect Rates

* Traditional
— Unit testing: 25 faults / KLOC
— System testing: 25/ KLOC
— Inspections: 20 - 50 / KLOC
* Cleanroom
—<3.5/KLOC delivered

— Average 2.7 / KLOC between first execution
and delivery




Basic Technologies

14 [ Propect Planning, Project . - : |

| Architachuts Spocieatien |

Box-Structured

Specification

Function-theoretic verification

— before any code is compiled/executed
— debugging not permitted

Statistical usage testing

Figure 1. Cleanroom Process Flow

Incremental Development Formal Specification
Typical system < 100KLOC * Box-structured design
Increment: 2 - 15KLOC — Black box: stimulus-response
Team size < 14 (6-8) — State box: formal model of system state
Each increment End - to - End — Clear box: hierarchical breakdown

Overlapped development of increments * Program functions

12 - 18 weeks from beginning of specification to
end of test

Partitioning is difficult and critical

* Verification properties of control structures




Box Structured
Specification and Design

Black Box: stimulus / condition / response;
organized into tasks; Z has been used for
specification; top-down, stepwise refinement;
concurrency supported

State Box: data / history view; model oriented

Clear Box: procedural control (sequence,

alternation, iteration, concurrent; contains nested
black boxes)

Box Definition language

State-box
(Model-based formal specification)

* Description of system state in terms of domains
(data structures without memory limitations
— Sets, sequences, records, lists, maps, relations
* Specification of state invariant
* Specification of operations
— Name
— Arguments with domains
— Validity condition (precondition)
— Effect on state (postcondition)
 Each operation must maintain the invariant

Results

Defects: 2 -5/KLOC versus 10-30/
KLOC for debugging

Productivity: 3 - 5x improvement in
verification over debugging

Reliability: statistical usage testing 20x as
effective as coverage testing

Cleanroom tools

* Test case generator
+ Reliability analysis package
— Spreadsheet
Verification-based inspection syntax
analyzer
— Script for inspection
* Management assistant
— Reports on process




Statistical Usage Testing

Certification of reliability
Process control
Cost-effective orientation

Guidelines for test completion (desired reliability
reached) or redesign (too many failures found)
Stratification mechanism for dealing with critical
situations

But questions exist on how to feed back the results
of testing to the development team

Testing process

Usage distribution models
— From competitors, earlier versions, analysis
Markov usage chain
— State transition probability matrix
Statistics
— TI (proportion of time spent in each state)
— n (number of states visited before a given state is reached)
— s (number of tests needed to reach a state).
Random test generation
— Design required
Test execution and test chain generation, including failure states
Statistics
— R (reliability)
— MTBF (mean time between failures)
— D (divergence of test chain from usage chain)

INITIAL USAGE
MODEL

Fig. 1: Top level view of software usage

REFINED USAGE
MODEL

—=
e\ |
—
. e i
AN e e i &
o =t u\,éﬁ v
e Ny e
\_1‘; Terminamion
e |
(=) |

Fig. 3: Structural phase « comstructing the usage
Markov chain




PROBABILITIES FROM
... SCENARIOS

[

USAGE MODEL
STATISTICS

Tanle 11 : Analvtical Resubs for the Exampla Uiags Modol

St " n
Invocation 0093750 07
Winduw 0187500 53
Namire no156s [
Minimize ]
teon o
Rustore 5
Mowve 3
Siae 1
Dreg Mouse a3
Up 64
Lowe s
Len 3
&ign 2
Ciose 0.7
Teminstion 107

Hes oUW AR AE— | &
nTE

USAGE AND TESTING
CHAINS

T
A e
F P W

o' |

Fig. 4 : (a) The usage Markov chain (b} The
testang Markov chain

PATH
FREQUENCY
MEASUREMENT

Fig. 5 : The cvolunon of the testing chain




DEALING WITH
FAILURES TESTING MODEL

STATISTICS

muple Unags Maadet

sequeace 3 A BCD

//TE‘QB

4y e
) iy

2 {

/
—{A 2 D

v\\ﬁ};} :%

h

o
i
o

: Creating a failure siate
aomesn
asizam

animss

References:

http://www.sei.cmu.edu/str/descriptions/cleanroom.html
http://www.embedded.com/97/feat9609.htm
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr022.96.pdf
http://www.uta.edu/cse/levine/fall99/cse5324/cr/clean/page.html

http://csdl2.computer.org/comp/proceedings/hicss/1998/8248/06/8248
0122.pdf

http://www.stsc.hill.af.mil/crosstalk/1996/11/xt96d11f.asp




