- Cleanroom
 - attempt to mathematically-based, scientific engineering process of software development
 - "Cleanroom software engineering yields software that is correct by mathematically sound design, and software that is certified by statistically-valid testing" – SEI
 - Objective: achive quality by design rather than through testing – time is spent in design and verification

- Harlan Mills (Linger, Dyer, Poore), IBM, 1980
- Analogy with electronic component manufacture
- Use of statistical quality control features
- · Certified software reliability
- Improved productivity; (near) zero defects at delivery
- Unit software use
 - can be defined in number of ways based on application

Key Features

- Usage scenarios; statistical modeling
- Incremental development and release
- Separate development and acceptance testing
- Program proofs; no unit testing

Defect Rates

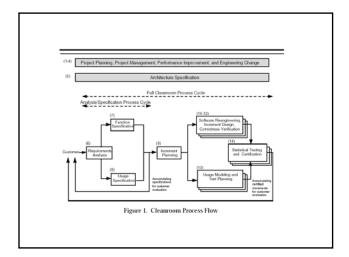
Traditional

- Unit testing: 25 faults / KLOC

- System testing: 25 / KLOC

- Inspections: 20 - 50 / KLOC

Cleanroom


- < 3.5 / KLOC delivered

- Average 2.7 / KLOC between first execution

and delivery

Basic Technologies

- Box-Structured
- Specification
- Function-theoretic verification
 - before any code is compiled/executed
 - debugging not permitted
- Statistical usage testing

Incremental Development

- Typical system < 100KLOC
- Increment: 2 15KLOC
- Team size < 14 (6-8)
- Each increment End to End
- Overlapped development of increments
- 12 18 weeks from beginning of specification to end of test
- Partitioning is difficult and critical

Formal Specification

- Box-structured design
 - Black box: stimulus-response
 - State box: formal model of system state
 - Clear box: hierarchical breakdown
- Program functions
- Verification properties of control structures

Box Structured Specification and Design

- Black Box: stimulus / condition / response; organized into tasks; Z has been used for specification; top-down, stepwise refinement; concurrency supported
- State Box: data / history view; model oriented
- Clear Box: procedural control (sequence, alternation, iteration, concurrent; contains nested black boxes)
- · Box Definition language

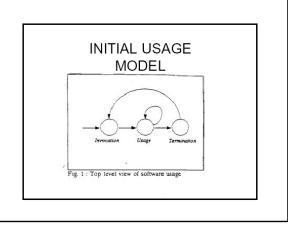
State-box (Model-based formal specification)

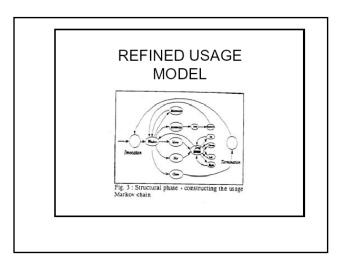
- Description of system state in terms of *domains* (data structures without memory limitations
 - Sets, sequences, records, lists, maps, relations
- Specification of state invariant
- Specification of operations
 - Name
 - Arguments with domains
 - Validity condition (precondition)
 - Effect on state (postcondition)
- Each operation must maintain the invariant

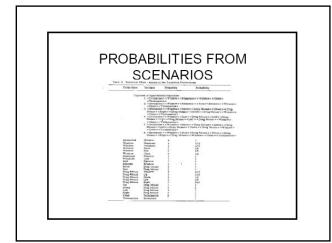
Results

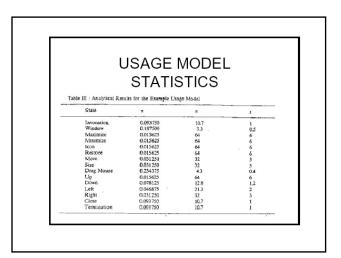
- Defects: 2 5 / KLOC versus 10-30 / KLOC for debugging
- Productivity: 3 5× improvement in verification over debugging
- Reliability: statistical usage testing 20× as effective as coverage testing

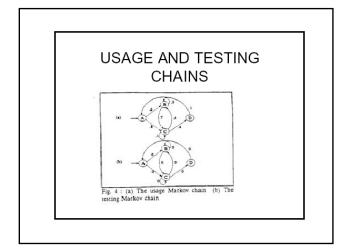
Cleanroom tools

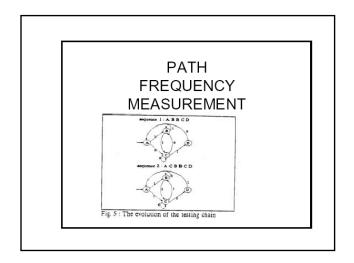

- · Test case generator
- Reliability analysis package
 - Spreadsheet
- Verification-based inspection syntax analyzer
 - Script for inspection
- Management assistant
 - Reports on process

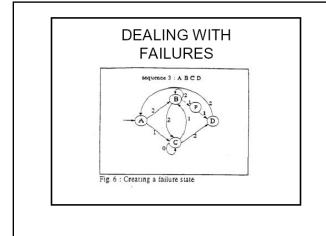

Statistical Usage Testing

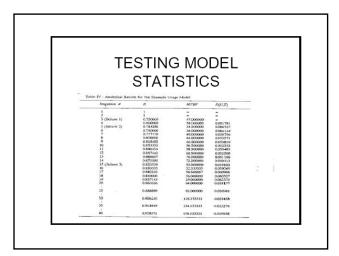

- Certification of reliability
- Process control
- Cost-effective orientation
- Guidelines for test completion (desired reliability reached) or redesign (too many failures found)
- Stratification mechanism for dealing with critical situations
- But questions exist on how to feed back the results of testing to the development team


Testing process


- · Usage distribution models
 - From competitors, earlier versions, analysis
- · Markov usage chain
 - State transition probability matrix
- · Statistics
 - Π (proportion of time spent in each state)
 - n (number of states visited before a given state is reached)
 - s (number of tests needed to reach a state).
- · Random test generation
 - Design required
- Test execution and test chain generation, including failure states
- Statistics
 - R (reliability)
 - MTBF (mean time between failures)
 - D (divergence of test chain from usage chain)







References:

- http://www.sei.cmu.edu/str/descriptions/cleanroom.html
- http://www.embedded.com/97/feat9609.htm
- http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr022.96.pdf
- http://www.uta.edu/cse/levine/fall99/cse5324/cr/clean/page.html
- http://csdl2.computer.org/comp/proceedings/hicss/1998/8248/06/8248 0122.pdf
- http://www.stsc.hill.af.mil/crosstalk/1996/11/xt96d11f.asp