
Visual Basic Coding Standards and Guidelines 

Naming Conventions 
• Use mixed case for variable names and begin variable names with a lowercase 

letter. 
• Use mixed case for subroutine, function, and type names and begin such names 

with an uppercase letter. 
• Use only uppercase characters for named constants. 
• Use multiword identifiers. In mixed case names, capitalize the first letters of the 

contained words in multiword identifiers to enhance readability. For example: 
maxElement, currentFile, and so on. In single case names, separate the words in a 
multiword name with underscores. For example: BUFFER_SIZE. 

• Use names that describe the roles of variables, functions, subroutines, types, and 
constants—this generally means that names should be more than two or three 
characters long. For example, use length rather than l. The exception is integer loop 
control variables used to index arrays, which are traditionally i, j, and k. 

• Declare everything explicitly and enforce this with an Option Explicit statement in 
every module. 

• Name controls using one of the following prefixes: 

Check Box chk Image img 

Combo Box cmb Label lbl 

Command Button btn Line lin 

Common Dialog dlg List Box lst 

Data dta Menu mnu 

Dir List Box dir OLE ole 

Drive List Box drv Option Button opt 

File List Box fil Picture Box pix 

Form form Vertical Scroll vsb 

Frame frm Shape shp 

Grid grd Text Box txt 

Horizontal Scroll hsb Timer tmr 

These naming conventions allow program readers to recognize many program objects at a 
glance. For example, DocumentType is a type, btnStart is a command button, and 
MEMORY_ERROR is a named constant. 

VB Coding Standard 1 



Formatting 
• Use standard indentation conventions for block structured languages. 
• Indent 3 spaces at a time. 
• Place at most one variable declaration on a single line of code. Use the rest of the 

line for comments. 
• Use vertical white space to separate code into segments that do parts of a whole 

task carried out in a block. 
• Use horizontal white space to reflect precedence in expressions. 

Types 
• Avoid the Variant and Byte types. 
• Beware of the size limitations of the Integer type (-32768 to 32767)—use Long 

when a large integer is needed. 

Expressions 
• Use parentheses liberally. 
• Avoid mixed types in expressions—change values to the needed types using the 

built-in conversion functions. 
• Simplify complex Boolean expressions by factoring, and by using DeMorgan's 

Laws to drive negations inward. 
• Use <= and < instead of >= and >. 
• Avoid the Choose and Switch functions. 
• Make loop termination expressions as weak as possible. 

Control Structures 
• Avoid the GoTo and GoSub (and hence the Return) statements. 

• In Select Case statements, always have Case Else or case conditions that exhaust all 
possibilities. 

• Use only constants in Select Case statement expressions. 

Functions and Subroutines 
• Avoid declaring a function or subroutine Static (thus making all its local variables 

static). 
• Pass parameters ByVal (by value) in preference to the default (by reference). 

VB Coding Standard 2 



Forms, Modules, and Access to Program Objects 

Visual Basic code appears in forms and modules. Forms are containers for controls; 
modules contain code not associated with controls. The content of forms is dictated by 
the controls that appear on them, but additional code may be added to them. All functions 
and subroutines appearing in forms are inaccessible outside the form, so only code for 
local form processing should be included in a form. The content of modules is entirely 
under the control of the programmer. Functions and subroutines placed in modules are 
accessible outside the module unless declared Private. Code placed in modules should 
reflect program structure, with emphasis on principles of cohesion, coupling, and 
information hiding. In particular, place implementations of abstract data types in separate 
modules. 

• In both forms and modules, make the scope of declarations as local as possible. 
• Declare functions and subroutines not referenced outside the module in which they 

are declared Private. 
• Declare all global constants and variables (if any) in a single module containing 

nothing else. 

Comments 
• Start each form and module with a banner comment stating the module name, 

purpose, writer, and notes explaining any special features. In maintenance, record 
the date, programmer, purpose, and description of all changes to the form or 
module. 

• Precede each function and subroutine definition with a banner comment stating the 
name and purpose of the procedure, and notes explaining any side effects, 
references to sources, explanations of algorithms, and so on. 

• In long sequences of code, break the code into cohesive blocks and precede each 
one with a summary of the processing carried out in the block. 

• If necessary, supplement role information captured in an object's name by a 
comment at the object's definition or declaration. 

• Explain an object's purpose at its point of definition or declaration. 
• Explain non-role-based operations when they occur. 
• Document unexpected side-effects in code segment comments (like header 

comments), at the point of declaration of the affected object and at the points where 
the side-effect occurs. 

VB Coding Standard 3 



Error Checking 
• Write error handlers and use On Error GoTo to invoke them for any unusual events. 
• Check the return codes of functions that return error codes, and handle or propagate 

any errors indicated by return codes. 
• Check parameters likely to be used improperly before doing any processing. 

Target Metric Values 
• Aim for function comment-to-code ratios of at least 0.8. 
• Try to write functions and subroutines with no more than 60 NCSL. 
• Try to write modules with no more than 500 NCSL. 
• Do not exceed a nesting level of 7. 
 

 

VB Coding Standard 4 


	Naming Conventions
	Formatting
	Types
	Expressions
	Control Structures
	Functions and Subroutines
	Forms, Modules, and Access to Program Objects
	Comments
	Error Checking
	Target Metric Values

