
© 2007 Pearson Education, Inc. 1 v1.0 

Activity 18-2: The Factory and Singleton Patterns 

Why? 

The Factory and Singleton patterns are among the most widely used and important 

design patterns. 

Learning Objectives 

 Understand the Factory and Singleton patterns and how to use them 

Success Criteria 

 Be able to explain the Factory Method and Abstract Factory patterns and the 

differences between them 

 Be able to explain the Singleton pattern and how it is implemented in object-

oriented systems 

 Be able to use the Factory and Singleton patterns appropriately and correctly 

Resources 

ISED sections 18.2 and 18.3 

Vocabulary 

Factory Method pattern, Abstract Factory pattern, factory class, Singleton pattern, 

singleton class 

Plan 

1. Review ISED sections 18.2 and 18.3 individually. 

2. Answer the Key Questions individually, and then evaluate the answers as a team. 

3. Do the Exercises as a team, and check your answers with the instructor. 

4. Do the Problems and Assessment as a team. 

5. Turn in the Problems and Assessment as a team deliverable. 

Key Questions 

1. Why are interfaces important for the two Factory patterns? 

2. How does the Factory Method pattern differ from the Abstract Factory pattern? 

3. Why does the instance() operation in the Singleton pattern need to be static? 

Exercise 

1. What would a Factory Method pattern look like without any interfaces? Would it 

still be the Factory Method pattern? 

2. Does the Singleton pattern have a factory method? 



© 2007 Pearson Education, Inc. 2 v1.0 

Problems (Deliverable) 

1. Please do ISED exercises 18.8 and 18.13. 

2. A program that interprets two language, Alpha and Beta, builds parse trees with 

two kinds of nodes: non-terminal nodes (which are large), and terminal nodes 

(which are small). The terminal and non-terminal nodes for Alpha and Beta are 

slightly different, but the interpreter runs code from only one language at a time, 

which it knows when its starts up, so the right kinds of nodes can be allocated. For 

efficiency, the program has a node manager that allocates and deallocates nodes, 

which are objects, from a pool of nodes that allows it to reuse node objects rather 

than creating and destroying them repeatedly. The node manager must contain 

operations for allocating terminal and non-terminal nodes and for deallocating 

nodes (returning them to the node pool). Space will be wasted and page faults 

may slow down the interpreter if there is more than one node pool, because then 

node objects will not be reused efficiently. Use your knowledge of the Factory 

and Singleton patterns to design the node manager. 

Assessment (Deliverable) 

1. Did this activity help you achieve the learning objectives? 

2. How could the instructor improve this activity? 


