
Data Structures and Algorithms 1

CS Content Academy: Data Structures

Outline

1. How Does Data Structures Fit into CS—What Is CS?
2. What Are Data Structures and Algorithms?
3. !e Structure of Data Structures and Algorithms

3.1 Part A: Container Hierarchy
3.2 Part B: Algorithm Analysis
3.3 Part C: Searching and Sorting Algorithms
3.4 Part D: Advanced Topics

4. !emes
4.1 ADTs and Contiguous vs. Linked Data Structures
4.2 Recursion vs. Stacks
4.3 Trade-O"s

5. Pedagogy
5.1 Projects
5.2 Execution by Hand
5.3 Visualization
5.4 Active Learning

6. Where to Go from Here

Data Structures and Algorithms 2

1. What is Computer Science?

What can we compute?

How can we compute things?

Hardware versus software—we only deal with software
How can we compute things, from most to least general

Computing as a human activity:

Software engineering
Societal and ethical issues
Cyber security and cyber war

Computer Science is the discipline that answers the question
What can we compute and how can we compute it?

!eory

What counts as computing—computability theory (automata, etc.)

What can be computed in principle—computability, decidability

What computations are tractable—abstract complexity theory

Practice
Applications of
automata
Arti#cial Intelligence
Halting problem, etc.
Cryptography

!eory

Algorithms—abstract complexity theory (P,
NP, etc.)

Languages—Formal language theory

Graphs—Graph theory

Logic

Practice
Algorithms and data structures
Algorithm analysis—concrete complexity
theory
Programming languages
Compilers and interpreters
Networking
Arti#cial Intelligence
Program Validation
Operating Systems, Database Systems, Games
and Simulations, Graphics and Media,
Business Applications, Scienti#c and
Engineering Applications, etc.

Data Structures and Algorithms 3

2. What Are Data Structures and Algorithms?

Data structure—an arrangement of data in memory.
Examples: arrays, singly linked lists, linked trees, hash tables, etc.

Algorithm—a #nite sequence of steps for accomplishing some computational task.
Examples: division algorithm, factorial function, binary search, insertion sort, etc.

Abstract data type (ADT)—a set of values (the carrier set), and operations (the method set) on
those values.

Examples: integers, strings, stacks, queues, etc.
Data type—an implementation of an abstract data type on a computer.

Examples: Java int, String, ArrayList, etc.
Remarks

1. Virtually every program stores some data, and it is de facto arranged in memory, so virtually
every program uses data structures.

2. Virtually every program has a #nite sequence of steps for doing something, so virtually every
program has algorithms.

3. Implementing an ADT (making a data type) requires #guring out how to represent values
of its carrier set on the computer and how to realize the elements of its method set in sub-
programs.

4 Representing values requires arranging data in memory, so implementing ADTs requires
data structures.

5. Realizing operations on a computer requires specifying a #nite sequence of steps to carry out
the operation, so implementing ADTs requires algorithms.

6. Every class embodies an ADT.
7. Programming is largely the design and implementation of ADTs, typically (nowadays) as

classes in an OO language, so programming essentially requires using data structures and
algorithms.

8. Computer scientists have been studying data structures for over 60 now, so there is a wealth
of material on this topic.

Data Structures and Algorithms 4

3.1 Structure of DS&A: A Container Hierarchy

Data Structures and Algorithms 5

3.2 Structure of DS&A: Algorithm Analysis

Framework

1. Choose a measure for the size of the input.
2. Choose a basic operation to count.
3. Determine whether the algorithm has di"erent complexity for various inputs of size n; if so,

then derive measures for the best case complexity B(n), worst case complexity W(n), and
average case complexity A(n) as functions of the size of the input; if not, then derive a
measure for the every case complexity C(n) as a function of the size of the input.

4. Determine the order of growth of the complexity measures for the algorithm.
Orders of Growth

Example: Find the Minimum Value in an Array

Strategy: Examine every element of the array and remember the smallest so far.

1. Input size measure: size of the array n
2. Basic operation: comparison of keys
3. Always does the same thing for inputs of size n, so #gure out C(n)
4. Order of growth: O(n)

n
10
100
1000

10,000
100,000

1,000,000

lg n
3.3
6.6
10
13
17
20

n
10
100
1000

10,000
100,000

1,000,000

n lg n
33
660

10,000
130,000

1,700,000
2 ∙ 107

n²
100

10,000
1,000,000

108
10¹0
10¹²

n³
1000

1,000,000
109
10¹²
10¹5
10¹8

2n
1024

1.3 ∙ 10³0

n!
3,628,800
9.3 ∙ 10¹57

1 public int selectionSort(int[] A) {
2 int min = A[0];
3 for (int i = 1; i < A.length; i++)
4 if (A[i] < min) min = A[i];
5 return min;
6 }

Data Structures and Algorithms 6

3.3 Structure of DS&A: Searching and Sorting Algorithms

Sorting Algorithms

Consider and analyze (time permitting) several standard sorting algorithms, including bubble
sort, selection sort, insertion sort, Shell sort, merge sort, quicksort, and heapsort.
Example: Selection Sort

Strategy: repeatedly #nd the smallest element in the array and place it at the start of the unsorted
portion.

1. Input size measure: size of the array n
2. Basic operation: comparison of keys
3. Always does the same thing for inputs of size n, so #gure out C(n)
4. Order of growth: O(n²)
Searching Algorithms

Consider and analyze sequential search and binary search. Introduce binary search trees and
consider algorithms on binary trees, including traversal, insertion, deletion, and search.
Example: Sequential Search

Strategy: examine each element until the key is found or the end of the array or list is reached.

1. Input size measure: size of the array n
2. Basic operation: comparison of keys
3. Behavior varies depending on the key and the array, so #gure out B(n), W(n), and A(n)
4. B(n) = 1, W(n) = n, A(n) ≈ n/2, which are all O(n)

1 public void selectionSort(int[] A) {
2 for (int i = 0; i < A.length-1; i++) {
3 int minIndex = i;
4 for (int j = i+1; j < A.length; j++)
5 if (A[j] < A[minIndex]) minIndex = j;
6 int tmp = A[i]; A[i] = A[minIndex]; A[minIndex] = tmp;
7 }
8 }

1 public int sSearch(int[] A, int key) {
2 for (int i = 0; i < A.length-1; i++)
3 if (key == A[i]) return i;
4 return -1;
5 }

Data Structures and Algorithms 7

3.4 Structure of DS&A: Advanced Topics

More containers:
• Bags
• Dequeues
• Randomizer (random queue)
• Quad trees
• Etc.

Graphs
• Matrix vs adjacency list representations
• Directed vs undirected graphs
• Graph ADT
• Breadth-#rst vs depth-#rst search
• Graph algorithms: spanning trees, minmum paths, etc.

Balanced Trees
• AVL trees
• 2-3 trees and red-black trees
• B-trees

Strings
• Sorting
• Tries
• String search algorithms
• Regular expressions
• Data compression

More ...

Data Structures and Algorithms 8

4.1 Themes: ADTs and Contiguous vs. Linked Data Structures

Every container is #rst considered as an ADT, and then we tink about how to represent carrier
set elements contiguously or using linked structures. Algorithms for these structures are then
considered/analyzed to decide when each is best to use.
Example: HashSets vs TreeSets

HashSets can store, remove, and #nd data a little more quickly than TreeSets, but TreeSets can
be traversed in order and HashSets can’t.

4.2 Themes: Recursion vs. Stacks

Every algorithm using stacks can be replaced with one using recursion and vice-versa. Sometimes
a job is easier to do with a stack, sometimes it is easier with recursion, and sometimes it doesn’t
matter. Also, recursion can be eliminated without a stack for tail-recursive algorithms. We
consider stack-based vs recursive algorithms and elimination of tail-recursion as we study various
containers and searching and sorting algorithms.
Example: Recursion Elimination from Binary Search

Recursive binary search is tail recursive, so recursion can be eliminated, speeding up the
algorithm slightly and using less memory to run it.

4.3 Themes: Trade-Offs

• Time vs Space
• E&ciency vs Complexity/Reliability
• Needed vs Unneeded Operations

01 public int bSearchRecursive(int[] A, int key) {
02 return bSearchHelper(A, key, 0, A.length-1);
03 }
04
05 private int bSearchHelper(int[] A, int key, int lo, int hi) {
06 if (hi < lo) return -1;
07 int m := (lo+hi)/2;
08 if (key == A[m]) return m;
09 else if (key < A[m]) return bSearchHelper(A, key, lo, m-1);
10 else return BSearchHelper(A, key, m+1, hi);
11 }
12
13 public int bSearch(int[] A, int key) {
14 int lo = 0;
15 int hi = A.length-1;
16 while (lo <= hi) {
17 int m := (lo+hi)/2;
18 if (key == A[m]) return m;
19 else if (key < A[m]) hi = m-1;
20 else lo = m+1;
21 }
22 return -1;
23 }

Data Structures and Algorithms 9

5.1 Pedagogy: Projects

Data structures and algorithms are essential to programming, so learning about them is also
about learning how to program.
!e best way to learn to program is to do it.
Example Projects

• Implement the container hierarchy
• Write a program to compare the time to sort various lists with algorithms

• Use containers to do something, like a checkout simulation using queues, or a concordance
using tree maps

• Write a simple game that uses interesting data structures, like Boggle
5.2 Pedagogy: Execution by Hand

!is is an essential skill that students need to be taught.
Example

Compute fib(4)
Exercise

Compute bSearch(new int[] {1, 3, 6, 7, 12, 19, 23, 25}, 5)
Compute bSearchRecursive(new int[] {1, 3, 6, 7, 12, 19, 23, 25}, 23)

5.3 Pedagogy: Visualization

Visualization can sometimes help students understand how an algorithm works.
Visualization can also demonstrate how algorithms to accomplish the same task di"er.
Investigate

• Sorting Algorithm Animations: http://www.sorting-algorithms.com
• Data Structure Visualizations: http://www.cs.usfca.edu/~galles/visualization

Comparison of all sorts on small slices of random data.
 N Bubble Select Insert Shell Merge QBasic QImprove Heap Inspct
10000 0.282 0.148 0.074 0.001 0.001 0.001 0.001 0.002 0.001
20000 1.127 0.592 0.298 0.003 0.003 0.002 0.002 0.005 0.002
40000 4.515 2.365 1.190 0.007 0.006 0.004 0.004 0.010 0.004
80000 18.003 9.453 4.725 0.015 0.012 0.008 0.008 0.022 0.008

01 public int fib(int n) {
02 if (n <= 1) return 1;
03 return fib(n-1)
04 + fib(n-2);
05 }

http://www.sorting-algorithms.com
http://www.cs.usfca.edu/~galles/visualization
http://www.sorting-algorithms.com
http://www.cs.usfca.edu/~galles/visualization

Data Structures and Algorithms 10

5.4 Pedagogy: Active Learning

Labs

• Labs are a valuable way to teach programming and to give students a supportive
environment for code development

POGIL

• POGIL stands for Process Oriented Guided Inquiry Learning
• POGIL is very popular and widely used in Chemistry
• My in-class activities are based on this approach

Process

1. Students prepare before class (read)
2. Students take a graded readiness quiz individually
3. Students take a graded IFAT-form quiz as a group
4. Students work through the activity in class in groups
5. Often, students do homework individually

Examples: Attached

6. Where to Go From Here

Books

• Most college data structure and algorithms textbooks are perfectly #ne
• !ey mainly di"er in the languages used and the level of presentation
• An advanced book using Java: Robert Sedgewick and Kevin Wayne, Algorithms, 4th

Edition, Addison-Wesley, 2011
• A less advanced book using Ruby (and it’s free): Christopher Fox. Concise Notes on Data

Structures and Algorithms: Ruby Edition, Ventus Publishing ApS, 2012
(http://bookboon.com/en/concise-notes-on-data-structures-and-algorithms-ebook)

The Web

• MOOCS (Coursera)
• Various (Stanford CS Education Library, etc.)
• Free video lectures (YouTube, freevideolectures.com).

http://bookboon.com/en/concise-notes-on-data-structures-and-algorithms-ebook
http://bookboon.com/en/concise-notes-on-data-structures-and-algorithms-ebook

	CS Content Academy: Data Structures
	Outline
	What can we compute?
	How can we compute things?
	Computing as a human activity:

	1. What is Computer Science?
	2. What Are Data Structures and Algorithms?
	Remarks

	3.1 Structure of DS&A: A Container Hierarchy
	3.2 Structure of DS&A: Algorithm Analysis
	Framework
	Orders of Growth
	Example: Find the Minimum Value in an Array

	3.3 Structure of DS&A: Searching and Sorting Algorithms
	Sorting Algorithms
	Example: Selection Sort

	Searching Algorithms
	Example: Sequential Search
	Example: HashSets vs TreeSets
	Example: Recursion Elimination from Binary Search
	Example Projects
	Example
	Exercise
	Investigate
	Labs
	POGIL
	Process
	Examples: Attached
	Books
	The Web

	3.4 Structure of DS&A: Advanced Topics
	4.1 Themes: ADTs and Contiguous vs. Linked Data Structures
	4.2 Themes: Recursion vs. Stacks
	4.3 Themes: Trade-Offs
	5.1 Pedagogy: Projects
	5.2 Pedagogy: Execution by Hand
	5.3 Pedagogy: Visualization
	5.4 Pedagogy: Active Learning
	6. Where to Go From Here

