Design and Implementation of Zeitline: a Forensic
Timeline Editor

Florian Buchholz and Courtney Falk
{florian,court}@cerias.purdue.edu
CERIAS, Purdue University
656 Oval Drive, West Lafayette, IN, 47901, USA

Keywords: Event Reconstruction; Digital Forensics; Com-
puter Forensics; Audit Data, Graphical User Interface

ABSTRACT

In this paper we describe the design and implementation of
Zeitline. Zeitline is a graphical timeline editor that allows a
forensic investigator to create a timeline of events that were
gathered from different sources, such as host MAC times,
system logs, and firewalls. We present some background
information, discuss the design of the tool, describe its fea-
tures, and give an overview of how to improve the existing
prototype.

1. INTRODUCTION

Many tools exist that aid a computer forensic investigator
in analyzing storage media and the overlying file systems.
Among those are Encase [5], the Sleuth Kit [4], and the
Forensic Toolkit [1]. They focus mainly on evidence recov-
ery, i. e. recovering deleted or hidden data. Beyond simple
searching and indexing functionality, these tools generally
have limited abilities to further analyze the data that is re-
covered.

Searching for keywords, file types, or file hashes might be
sufficient when trying to locate incriminating material on a
system, but is insufficient when trying to reconstruct events
that have taken place on a system. Zeitline allows a foren-
sic investigator to construct and view a time line of events
based on the information found the system under investi-
gation. The timeline will consist of events that come from
different sources such as file timestamps (MACs), system
and application logs, IDS and firewall logs. When examin-
ing evidence from different sources of a computing system
(e.g. system logs and MAC times), currently an investigator
needs to analyze the output from those sources separately
and make notes to correlate events. Some tools exist that
can incorporate events from multiple sources into a single
list of time-sorted entries (see Section 2), but only when

special software was installed on the systems to be moni-
tored. Zeitline is the only tool we are aware of that lets a
user import events from arbitrary sources and order them
according to time values without the need for setting up spe-
cial monitoring. Furthermore, it is the only tool that lets a
user generate a hierarchy of events: starting with events at
discrete times that were generated from the sources, events
that belong to the same “action” or type can be grouped to-
gether into event hierarchies. For example, the three events
“access program gec”, “access file x” and “access library y”
could be grouped together into a super event labeled “com-
pile program x”, which in turn could be part of another
super event “install rootkit z”.

Zeitline is an open-sourced graphical tool [3] written in Java
that allows a forensic investigator to import various events
from a computing system and then order and classify them
into one or more timelines of events. Events may be grouped
together into super-events, creating a hierarchy of events.
The organization of events and timelines as tree views al-
lows the investigator to display and hide specific events,
which makes it easy to focus on the relevant aspects of the
investigation one at a time. This is further supported by the
ability to filter events based on keywords as well as start and
ending times. Furthermore, events serve as a unified data
structure to bring together forensic evidence from different
data sources. It is now possible to combine data from those
sources and analyze them within a single framework.

The design objectives for Zeitline are as follows:

e Generating events from arbitrary data sources

e Grouping events together into logical groups recur-
sively

Filtering of the data that is displayed

Locating specific events

Intuitive interface

Platform-independent implementation

2. BACKGROUND AND RELATED WORK

The main functionality of the Encase tool [5] from Guid-
ance Software lies in the retrieval of data from a system and
providing the means to locate specific data easily. Encase
provides the functionality to sort file information by vari-
ous fields, which includes timestamps. It is also possible to

retrieve and search within log files from a system, such as
system logs, log data from security software and application
logs [6]. However, there is no opportunity to combine data
from different sources and establish any kind of temporal or
logical ordering among them.

Access Data’s Forensic Toolkit (FTK) [1] focuses primar-
ily in securing information off a computing system and then
provides the ability to locate and examine specific files. Files
can be sorted by their attributes, including the timestamps.
There are extensive search capabilities as well as a large
number of known file formats whose contents can be dis-
played and searched.

Brian Carrier’s Sleuth Kit [4] also has the ability to view
file system events. The focus, however, lies primarily in the
recovery of the information as opposed to its analysis. Ba-
sic timelines of the file system events are generated with the
mactime tool, which generates a sorted list of MAC times-
tamp events. One way an investigator is able to organize
events with the Autopsy forensic browser is the ability to
generate annotated bookmarks for events. However, it is
not possible to group events in a hierarchy or perform de-
tailed searches on them.

The FileList Pro tool from New Technologies [9] can create
timelines of file activity on a system. A user can choose
to sort the files and the information associated with them
by various timestamps. Timelines can be created for file
access, creation, modification, and deletion for DOS and
Windows systems. However, a user is not able to use the
tool to introduce events from other sources, or group events
together.

The nFX open Security Platform from netForensics [8] pro-
vides a mechanism to gather event information from var-
ious sources of a network. The vents are normalized and
synchronized and displayed real-time for intrusion detection
purposes. Furthermore, statistical analysis techniques may
be utilized for event correlation. The events are gathered
via agents that need to be installed on the systems from
which to gather data. There is a large number of devices
supported directly by the product, and a “Quick Connect”
feature provides the ability for custom agents for other data
sources.

Given that agents need to be installed and active on all sys-
tems that are monitored, the usefulness for nFX for forensic
purposes is limited. When the platform is deployed on a
system that needs to be investigated it may well be used
for a forensic investigation. However, it is not possible to
group events into hierarchies to graphically build a timeline
of events. Also, only those events are captured that are pro-
vided through some kind of logging or reporting mechanism
by the system or application. Events from MAC times for
example cannot be captured in this fashion.

3. THE DESIGN OF ZEITLINE

Zeitline presented several design challenges to the develop-
ers. Among those were fast and efficient data structures,
intuitive user interface design, and compliance with the ba-
sic requirements of digital forensics tools.

3.1 The Event Data Structure

Choosing an appropriate data structure was the first hurdle
faced by the developers. The Java Development Kit (JDK)
in version 1.4 offers several data structure classes. As the
anticipated size of the data set was in the hundreds of thou-
sands of events, the ability for a rapid search and retrieval
of data items is of utmost importance. Also, the project as-
sumed that events could be added to the data structure at
up to ten thousand or one hundred thousand at a time. This
necessitated a quick build time of the data structure. Given
that that events needed to be sorted, it was decided that
any data structure would require a run time of O(log(n))
for any of its operation (lookup, add, remove), which would
result in an overall build-time of O(nlogn).

JDK 1.4 offers a TreeSet class, which is an implementation
of a balanced search tree. However, due to the mappings
required for a custom TreeModel class for the JTree GUI
component, one of the lookup operations needed could only
be run in O(n) time, which resulted in a build-time of O(n?).
Thus we decided to implement a custom data structure that
utilizes Adelson-Velskii and Landis (AVL) trees [2], a variant
of a balanced binary search tree.

The main data structure of Zeitline is the event. There
are two types of events in Zeitline: atomic events are the
events that are directly imported from the system, i.e. file
MAC times, logs, etc. Complex events are events that are
comprised of atomic events or other complex events, that is
they act as a container for other events from which it derives
some of its properties. There is an abstract class TimeEvent,
which defines common fields and methods of the two kinds
of events, such as the start time, name, description, and
parent event fields and methods to retrieve them. The class
AtomicEvent further adds a reference to the source of the
event. The source contains information about from where
the event was imported and what the time granularity is.
The class ComplexEvent adds fields for an end time and
its child events. The start time of a complex if event is
defined as the smallest start time among its children, while
the end time is the largest end time of the children (for
atomic events, the end time can be considered the same as
the start time). That is, whenever child events are added
or removed from the complex event its start and end times
potentially change. Note that a complex event does not
have a source associated with it. Instead, the sources of its
children define its “source”.

The child events of a complex event are organized in a bal-
anced binary AVL search tree. The sorting key for the chil-
dren is their start time combined with a unique identifier so
that the events are sorted by their start time. Events that
have the same start time and are siblings are sorted in an
arbitrary fashion (actually, an event that was created ear-
lier is considered “smaller” because its unique identifier will
be smaller. Complex events that are children of a complex
event in turn may contain children, which are also organized
in AVL tree, and so on. Figure 1 depicts the structure of a
complex event.

Thus a timeline is nothing but a complex event as a root
that contains the hierarchy of events with its children. Zeit-
line uses a subclass of the java.swingx.JTree class to dis-

Start Time
End Time
Name
Description
Parent
ID
Children

Figure 1: The structure of a complex event

play timelines in a tree view. Complex events are expand-
able/collapsible nodes, whereas atomic events are the leaf
nodes. This is analogous to a file systems browser with di-
rectories and files.

A complex event must at least contain one child, which
means that at the lowest level of the hierarchy there must
be an atomic event. The exception is an empty timeline,
where the complex event serves as the root node of the tree
view.

3.2 Importing Events

One of the essential features of Zeitline is its ability to gen-
erate events from any kind of data source. This is similar
to the “Quick Connect” feature of the nFX Open Security
Platform, but given that we do not attempt to gather data
in real-time, we have the ability to gather more types of
data, such as file MAC times or other information that can-
not be actively monitored by agents installed on a system.
While currently only output from the the £1s and ils tools
are supported, Zeitline’s import capabilities can be dynam-
ically extended by supplying a Java class that implements
our InputFilter interface and generates events from the de-
sired data source. The fact that Zeitline dynamically loads
the input filter classes at start-up means that a user can
extend the functionality without having to re-compile the
Zeitline classes. It is sufficient to compile the new input
filter class and put it into a special directory.

Because the ability to create your own input filters to gener-
ate events is one of the most important features of Zeitline,
we discuss the Java InputFilter class in great detail here
and show through the example of the FLSInputFilter how
to implement an input filter. The interface requires the fol-
lowing methods:

public abstract class InputFilter {

public abstract Source init(String location,
Component parent);

public abstract AtomicEvent getNextEvent();
public abstract FileFilter getFileFilter();
public abstract String getName();
public abstract String getDescription();
public abstract long getExactCount();
public abstract long getTotalCount();
public abstract long getProcessedCount();

Classes that implement the InputFilter interface must pro-
vide an implementation for the required methods. init()
will initialize the data source (e.g. open a file and gather in-
formation about the source) and return an object describing
the source. getNextEvent () will return the next event that
comes from an initialized source. If there is no next event,
then null is returned. This allows loops such as:

while ((event = filter.getNextEvent()) != null){
/* process the event */

The getFileFilter method tells the tool how (and if) to
filter files or file names when the file chooser dialog is opened
(e.g. “*.txt” for text files). It may return null if no such
filtering is desired.

The getName () and getDescription methods return a name
and a description for the filter, respectively. The name will
appear in the filter type selection when importing, while the
description will be used in future versions to give the user
more feedback when selecting a filter.

The three methods getExactCount (), getTotalCount (), and
getProcessedCount () are used for progress bar updates. If
the filter knows how many events will be generated, then
it returns that number as the exact count. Otherwise, the
exact count should return 0 and the total count can be re-
turned, which represents the amount of data that is pro-
cessed (number of lines or bytes, for example). The method
getProcessedCount () will then return the amount of data
(of the total count) that has already been processed by the
filter during the import process.

In the following we explain how our FLSInputFilter class
works, which may serve as a proof-of-concept for other filter
classes. The FLSInputFilter class processes data that was
output by the fls tool, which is part of the Sleuth Kit [4].
We require the £1s output to be in machine format, i.e. with
the -m flag enabled.

The init method is fairly straightforward. We attempt to
open the input stream specified by the file name and on
success we return a new Source object or null otherwise:

public Source init(String filename) {
try {
file_input = new BufferedReader(
new FileReader(filename));
}
catch (IOException ioe) {
return null;
}

return new Source("FLS filter", filename,
Source.GRANULARITY_SEC) ;

Each line of the fls output can create between one and
three separate events, depending on whether the timestamp

are the same or differ. For this, we have a FIFO queue called
event_queue in which we can place the extra events resulting
from the processing of the line to be read in subsequent
getNextEvent () calls. Thus the algorithm for processing
lines and returning events is as follows:

1. If event_queue is empty, read the next line from the
input. Else dequeue and return the next event.

Return null is end of file is reached.
Process the line and compare the timestamps.

If more than one event is created, queue all but one.

ANl

Return the remaining event.

The following is pseudo-Java code of the getNextEvent ()
method, glossing over unimportant parts:

public AtomicEvent getNextEvent() {
if (event_queue.isEmpty()) {

read the line from the input stream
if (line == null) return null;

fields = line.split("\\I");

// get timestamps, we have second granularity
// but need to convert to ms

long mtime =

Long.decode(fields[12]) .intValue()*1000;
long atime =

Long.decode(fields[11]) .intValue()*1000;
long ctime =

Long.decode(fields[13]) .intValue()*1000;

String name = fields[1];

String description = "User: " + fields[7] +
"\n" + "Group: " + fields[8] + "\n" +
"Mode: " + fields[5];

if ((mtime == atime) && (mtime == ctime))
return new AtomicEvent("MAC " + name,
description, new Timestamp(mtime));

if (mtime == atime) {
event_queue.add(
new AtomicEvent("MA. " + name,
description, new Timestamp(mtime)));
return new AtomicEvent("..C " + name,
description, new Timestamp(ctime));

/* and so on for all the MAC combinations ...*/
}
else
return (AtomicEvent) event_queue.removeFirst();
}

The progress bar methods are implemented as follows: be-
cause we do not have an exact count of the number of
events that will be generated when we initialize the filter,
getExactCount () returns 0. The total count is simply the
size of the FLS file in bytes, and the processed count the
byte position of the open file handle:

public long getExactCount() {
return O;
}

public long getTotalCount() {
return file_input.length();
}

public long getProcessedCount() {
return file_input.getFilePointer();
}

3.3 The Graphical User Interface

Java offers several options for producing GUIs. Among
them are the Abstract Windows Toolkit (AWT) and more
recent Swing classes. Briefly considered was the Eclipse
project, whose Simple Window Toolkit (SWT) allows Java
GUI functionality to be handled by OS-native APIs. Even-
tually Eclipse was discontinued from consideration because
of its poor performance when building a Tree object. Swing
proved to be the optimum choice for GUI design because of
its native GUI objects such as the tree list, an object ideally
suited for the hierarchical display of events such as those
dealt with in Zeitline.

A conscious thought while designing the GUI was to make
it as easily understandable as possible. Because the gen-
eral audience of the program may include law enforcement
professionals with little prior background in computers, the
program should be as simple as possible to approach an
understand. With this thinking in mind the GUI was con-
structed to imitate the functionality of other pervasive ap-
plications, such as Microsoft’s Windows Explorer, so as to
take advantage of the user’s innate understanding of user
interface functions.

Figure 2 shows Zeitline with two timelines facing each other.
The timeline on the right was imported from the fls tool
output from the HoneyNet Scan of the Month 15 [7]. The
timeline on the right contains select events from that source
that involve the installation of a rootkit. Atomic events are
displayed with a single bullet icon, and complex events have
a triangle of three small, differently colored bullets for an
icon. The selected event in the left tree can be moved to
any of the complex events via drag & drop or cut & paste.
Furthermore, a new complex event or even a new timeline
can be created, containing the selected event. We can also
“delete” the event (see Section 4.2).

4. FEATURES OF ZEITLINE

The initial prototype of Zeitline that we describe in this
paper concentrates on a small set of basic features that are
important when constructing a timeline of events. They
can be divided into three categories: managing events via
the GUI, maintaining the integrity of digital evidence, and
being able to quickly locate events. We will also give a
discussion of future features for Zeitline in Section 5.

4.1 Managing events

Being able to manage events efficiently is the most important
feature of Zeitline. After events from one source have been
imported into a single timeline, a user has several options
to group them into complex events. New complex events
can only be created from a selection of other events (atomic

' . Zeitline

e i

File Edit Event Timeline Yiew Help

- 3 o B

A& W [EE E R

4

[Import from FLS filter: scanl15fls | y || Rootkit |
@ 2001-03-16 05:03:38.0 .4, sshingpan_tilter |af807 rootkit
W 2001-03-16 05:03:38.0 A, Tloppy N § oo 2001-02-15 20:45:02.0 Creation of drag-on rootk
@ o5 2001-03-16 09:39:10.0 Login user root : @ 2001-03-15 20:45:02.0 M.C JfdevSida/. drag-on

W 2001-03-16 09:39:10.0 A, AJetcyp.cant @ 2001-03-15 20:45:02.0 MAC Jfdev/Sida/. drag-on/
W 2001-03-16 09:39:27.0 (A, AJetc/shadaw @ 2001-03-15 20:45:02.0 MAC Jfdev/ida/.drag-on,s
& 2001-03-16 09:39:28.0 A, Jetc/motd @ 2001-03-15 20:45:02.0 MAC JdevSida/.drag-on/s
@ 2001-03-16 09:39:29.0 A, Jfetc/profile @ 2001-03-15 20:45:02.0 M.C JdevSida/. drag-on/
@ 2001-03-16 09:39:20.0 A, Jfetc/profile.d @ 2001-03-15 20:45:02.0 M.C JdevSida/.drag-on/s
@ 2001-03-16 09:39:29.0 A, Jetc/profile.d/ @ 2001-03-15 20:45:02.0 M.C JfdevSida/. drag-on,s
@ 2001-03-16 09:39:29.0 A, Jetc/profile.d/ @ 2001-03-15 20:45:02.0 MAC JdevSida/.. Alinsnd
@ 2001-03-16 09:39:29.0 A, Jetc/profile.d/ @ 2001-03-15 20: O MAC fdewAidas, . Alogcly
& 2001-03-16 09:39:29.0 A, AJetc/profile.dA @ 2001-03-15 20:45:02.0 MAC JfdevSida/.. Asense
W 2001-03-16 09:39:29.0 LA, AJetc/bashro W 2001-03-15 20:45:02.0 MAC AfdevSida/.. /512
W 2001-03-16 09:39:29.0 A, Aetc/DIR_COLORS W 2001-03-15 20:45:02.0 LA SdevSidal. . SmkxTs
W 2001-03-16 09:39:20.0 A, Aetc/sysconfigy W 2001-03-15 20:45:03.0 M.C fdev/Sida/.drag-on
W 2001-03-16 09:39:29.0 A, hindhostname @ 2001-03-15 20:45:03.0 A, Jdev/ida/.drag-on/
& 2001-03-16 09:39:28.0 A, Jroot/.hash_pro @ 2001-03-15 20:45:03.0 A, Jdev/ida/. drag-an/]
@ 2001-03-15 09:39:20.0 A, Sroot/.bashrc @ 2001-03-15 20:45:03.0 A, fdev/sida/. drag-on/s

W 2001-03-16 09:40:11.0 (A, Abindmkdir @ 2001-03-15 20:45:03.0 A, fdevSida/. drag-ongd

e 2001-03-16 09:40:11.0 A, froot @ 2001-03-15 20:45:03.0 A, fdevSida/. drag-ongd

@ 2001-03-16 09:40:58.0 .A. Setc/services @ 2001-03-15 :03.0 .A. Jdev/sida/. drag-on/d

=] 0 A fetc/inputrc | W 2001-03-15 0 M.C fdewSidas. .

e 2001 M.C Adew/idas drag-on/s W 2001-03-15 O M.C Jdevsidas. . Amkxfs

W 2001-03-16 00 0 LA fhindzoat W 2001-03-15 O MAC JdewSidas.. J=

W 2001-03-16 09 0 LA fhindgunzip W 2001-03-15 O MAC JdewsSidas.. fssh_h

W 2001-03-16 09 QA0 Shindogzip @ 2001-03-15 O MAC JdewSidas.. fssh_rs

W 2001-03-16 00 QA0 fhindtar W 2001-03-15 L0OMAC Sdewsidald. . Jropad

W 2001-03-16 0 QA Ahinduname AL fdev/idas.drag-on

] [¥]

Figure 2: A screenshot of Zeitline

and/or complex): the selected events are moved into a newly
created complex event, which, in turn, is inserted into the
timeline at the parent of the node(s) highest in the hierar-
chy among the selected events. Once a complex event exists,
events can be transfered to and from it via drag and drop.
This can be within the same timeline or between two time-
lines. Furthermore, events may be transfered using cut and
paste actions. Nodes in the tree that represent a complex
event may be expanded or collapsed, allowing the user dis-
play and hide information as needed.

A user can also create empty timelines and then populate it
with events, or he can create a new timeline from selected
events of another one. This way, a user can make a hypoth-
esis and then look for events supporting it while at the same
time building the timeline for it. Timelines are displayed ei-
ther within a single JTabbedPane or in two such panes next
to each other. The arrangement of timelines in tabbed panes
allows the user to easily switch view between timelines. The
double-pane model lets the user view two timelines next to
each other. This is especially beneficial when constructing a
timeline of events from different sources: one side is used to
construct the event hierarchy, and the other side to search
for the relevant events supporting the timeline under con-
struction. This mode is also ideal for moving events between
timelines via drag and drop. The single-panel mode offers
more viewing space for the tree view and may be helpful
when grouping events within the same timeline.

4.2 Maintaining forensics integrity

The final challenge faced by the developers of Zeitline was
that of conforming to the special needs of digital forensics
software. Data utilized by forensic programs is often pre-

sented in courts of law. As a result of this usage the han-
dling of data by the software is subject to certain restrictions
to prevent manipulation, favoring one side or another. One
specific example of this is how a single source of informa-
tion such as output from the FLS tool provides hundreds or
thousands of pieces of evidence. An unscrupulous investiga-
tor could remove from the data set any events that are not
beneficial to his or her side’s case. However, an investigator
may also want to remove from view certain events that are
distracting or cloud the overall picture.

An all-or-none approach towards sources and events was
taken. Either the program would use every single event from
a source file or none at all. An investigator would not be
allowed to delete from the project any events. The solution
to this was to create an unseen ”orphan” timeline that con-
tains any ”deleted” events. The events themselves are not
deleted from the project but merely shifted into the orphan
timeline. In this way the events can be moved out of the
field of view but without compromising the integrity of the
source of evidence.

Cut and paste functionality also affects the source integrity
of a data set. It is possible for an event to be cut and never
pasted back into a timeline. If this were to happen then
when the program closes the event stored in the cut buffer
is lost. In order to avoid this, special care is taken when
the program is saving to first dump the contents of the cut
buffer into the orphan timeline before writing out the data.

4.3 Queries

Zeitline uses Query objects to match against events. Queries
can then be used to filter and locate events. During filter-

ing only those events are displayed that match the query,
whereas when locating events the (first) event(s) that match
the query are displayed in their current context.

Currently, queries only support a keyword search in combi-
nation with a time interval in which the events must occur.
The keyword search allows the use of regular expressions
as we use Java’s String.matches() method to determine
a match. The keyword is initially padded with wildcard
(.*) matchers at the start and end, but the keyword itself
can contain Java regular expression characters. This also
means that certain characters have to be escaped for a lit-
eral match.

All the logic needed to perform query matches is contained
in the Query class. More sophisticated types of queries
may thus be easily added to Zeitline by either modifying
the Query class, or by sub-classing it and overriding its
matches() method. Some of the query features that are
planned for future releases are: search by event source, end
time, and type (once a typing system for events exists).

S. CONCLUSIONS AND FUTURE WORK

With the first release of Zeitline we have provided a tool that
allows a forensic investigator to import events from differ-
ent sources, and lets him group events together into complex
events. This grouping may create a hierarchy of events from
very detailed (individual file accesses, network logs, etc.) to
general (system installation, system break-in, etc.). That
way, an investigator may hypothesize about what events
took place on a system, using the low-level events to support
the hypothesis. At the same time, events are kept in chrono-
logical order, so that timelines of either the entire system or
individual (complex) events can easily be created. Further-
more, events that can be identified to be part of the normal
system behavior and moved to a proper complex event. This
can drastically reduce the amount of information an inves-
tigator has to analyze repeatedly.

Zeitline is programmed in Java, which means that it will run
on many platforms, including Windows, MacOS, and Linux.
Adding new event import filter objects is a fairly simple task
and independent from Zeitline’s other functionality. Thus,
it is simple to add support for more or future types of event
inputs. Furthermore, Zeitline is open source, which means
that it may be adjusted to individual needs and extended
by third parties easily.

Zeitline performs reasonable fast, but the Java Swing com-
ponents cause a significant overhead. Importing approxi-
mately 86,000 events on an AMD Athlon 900MHz proces-
sor machine with 1GB main memory takes 46.6 seconds, of
which 27 seconds are used to draw the JTree widget from the
complex event we created. Importing 14,630 events takes a
total of 9.7s, of which 5.5s are used for the GUI operations.
The responsiveness of the GUI also depends on the number
of events that are present. Selecting 86,000 events within
a single tree view takes about as much time as generating
the events. The drag and drop performance is also affected
by the number of events. For this reason we recommend
that after importing a large number of events to break the
large set down into smaller timelines that belong together
either temporal or logical, as a first step. This will improve

responsiveness of the GUI significantly. For future work we
plan to introduce a feature that “swaps out” unimportant
events to disk, reducing the amount of events that need to
be kept in the GUI data structures and in main memory.

The first version of Zeitline has a limited set of what we
consider its core functionality. We do see great potential for
future features that may be very useful, as well. Some of
these include:

Performance improvements

— Multi-threading for tasks such as filtering or im-
porting events

— Indexing various fields of events for faster search-
ing and filtering

e Usability improvements

— Right-click context menus for events and timeline
tabs

— Status bar and progress bars

— Drag & drop functionality for timelines

e Have more information about the host available. This
could include things such as user mappings and infor-
mation about hard- and software.

e Support for events that do not have a time associated
with them. For example, a user’s command line his-
tory contains events that are ordered and can provide
valuable information.

e Support for events from more than one host. Thing
such as clock differences and clock drift and time zones
will have to be considered for that. Zeitline can then
be used to synchronize events from different sources.

e A type system for events. This can simplify the group-
ing of events and it enables new filter and search pos-
sibilities.

e The ability to export timelines, for example into some
kind of XML format.

6. REFERENCES
[1] AccessData Corp. Forensic Toolit. http:
//wuw.accessdata.com/Product04_0Overview.htm.

[2] G.M. Adelson-Velskii and E.M. Landis. An algorithm
for the organization of information. Dokladi Akademia
Nauk SSSR, 146(2):1259-1262, 1962.

[3] Florian Buchholz and Courtney Falk. Zeitline forensic
timeline editor. http://www.cerias.purdue.edu/
homes/forensics/timeline.php, April 2005.

[4] Brian Carrier. Sleuthkit and Autopsy forensic browser.
http://www.sleuthkit.org.

[5] Guidance Software. Encase forensic software.
http://www.guidancesoftware.com.

(6]

Guidance Software. EnCase Enterprise Edition Detailed
Product Description.
http://www.guidancesoftware.com/corporate/
whitepapers/downloads/EEEDetajiled.pdf, July
2004.

HoneyNet Project. HoneyNet Scan 15.
http://www.honeynet.org/scans/scanib, May 2001.

netForensics Inc. nFX Open Security Platform.
http://www.netforensics.com/nfxosp.asp.

New Technologies Inc. FileList Pro Computer Timeline
Software.
http://www.forensics-intl.com/filelist.html.

