
PERVASIVE BINDING OF LABELS TO SYSTEM PROCESSES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Florian Buchholz

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2005

ii

Für meine Eltern

iii

ACKNOWLEDGMENTS

There is a large number of people without whom my work at Purdue would

not have been possible. Special thanks go to my family – my father Eberhard, my

mother Erika, my sister Susanne, and my niece Tekla – for always being there for

me, their love and support. Many thanks also to my “American family”, Vivian and

Kip Kistler, Yuliya and Jason Kistler, and Kiera and Josh Dubach. You adopted me

to your family and always welcomed me with open arms.

I would like to thank my committee for their support and insightful feedback,

especially my advisor Gene Spafford (Spaf) for his guidance, help and support. Spe-

cial thanks also go to my former advisor Clay Shields, with whom I developed the

early ideas for my work.

I have made many friends during my time at Purdue, and they provided me

with much needed distractions from my studies, shoulders to lean on, and much

happiness. A very special thank you goes to Marina Bykova for dancing with me

and being a good friend, and Jim Early for taking many paths together and being as

great a friend as one could want. My former and current office mates Tom Daniels,

Ben Kuperman, and Brian Carrier also have become good friends and I appreciate

our stimulating discussions as well as the stimulating beverages we consumed. Scott

Robinson, my former room mate deserves a thank you for putting up with me, and

he and Tia have become good friends to me. I would like to thank Ed Finkler for our

quests to discover good music in this State of Indiana. Thanks to Courtney Falk for

his collaboration. Thanks also go to the “New Year” crew: Sara and Kevin Miller,

Mark Harbaugh, Jeff and Sarah Wagner, Kyle Ham, Sarah “Sprite” Daley, and

Stephanie Popper; the “office” crew (current and past): Krista Bennett, Abhilasha

Spantzel, Sundararaman Jeyaraman, Rajeev Gopalakrishna, Paul Williams, Mahesh

Tripunitara, Sofie Nystrøm, Anya Berdichevskaya, Mat Baarman, Keith Turner,

iv

Hao Wu, and Chris Telfer; the “dance” crew: Adrienne Foster, Frank Scharf, Corrie

Vandervlugt, Dave Zage, and Tyler Hershberger; the “beer” and “wine” crews.

Last but not least my thanks go out to CERIAS and the Computer Sciences

Department. Many thanks to the CERIAS sponsors for their financial support and

collaboration. A big thank you to the hard-working staff at CERIAS who made my

life so much simpler: Adam Hammer, Ed Cates, Marlene Walls, Mary Jo Maslin,

Carol Dyrek, Debbie Frantz, Laurie Floyd, Randy Bond, Jennifer Kurtz, and Tersa

Bennett. Many thanks also to the staff in the CS graduate office, Dr. Gorman, Amy

Ingram, and Susan Deno.

There are many more who have touched my life at Purdue in a positive way, and

to all of you I extend my deepest gratitude. Thank you very much!

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . x

1 Introduction . 1

1.1 Background and Problem Statement 1

1.2 Thesis Statement . 3

1.3 Document Organization . 4

2 Background and Related Work . 5

2.1 System Information . 5

2.1.1 Log Files . 6

2.1.2 File System Metadata . 8

2.1.3 Digital Forensics . 11

2.2 Information Flow Analysis . 14

2.2.1 Information Flow Policies . 14

2.2.2 Static Information Flow Analysis 18

2.2.3 Dynamic Analysis . 18

2.3 Network Traceback . 19

2.3.1 Packet Source Determination 20

2.3.2 Correlating Streams . 25

3 Adding Audit Information . 28

3.1 Types of Information . 28

3.1.1 The Relevance of Metadata for Forensics 30

3.2 Desired Information . 32

3.2.1 Who Did It? . 33

vi

Page

3.2.2 Where Did That Come From? 36

3.2.3 When Did What Happen? . 39

3.2.4 How Did It Happen? . 42

3.2.5 What Was Done to the File? 43

3.2.6 User Influence and Location Information 43

4 A Model for Label Propagation Based on Causality 45

4.1 Causality . 45

4.1.1 Labels . 47

4.2 A General Model of Label Propagation Between Principals Based on
Causality . 48

4.2.1 Covert Channels . 57

4.3 Space Analysis . 58

4.3.1 Enforcing Space Constraints 63

4.4 Properties of the Propagation Model 65

4.5 Case Studies . 72

4.5.1 User Influence Labels . 72

4.5.2 Host Causality Labels . 74

4.5.3 Network Location Traceback Labels 75

4.5.4 Military Classification Labels 76

5 Implementation . 80

5.1 Subsystems Affected by Label Propagation 81

5.1.1 Shared Resources . 82

5.1.2 Interprocess Communication 84

5.1.3 Operations and System Calls 85

5.2 Data Structures and Operations . 93

5.3 IPC: Sockets . 96

5.4 Shared Resources: Files . 100

5.5 Results . 103

vii

Page

5.5.1 User Influence . 103

5.5.2 Location Information . 106

5.5.3 Remote System Compromise 107

5.5.4 Performance Overhead . 109

6 Conclusions . 116

LIST OF REFERENCES . 127

Appendix A: Detailed Performance Results . 135

VITA . 139

viii

LIST OF TABLES

Table Page

5.1 Processor and process tests – times in µs 112

5.2 File system tests – times in µs . 112

5.3 Network latency tests – times in µs 114

5.4 I/O bandwidth tests – in MB/s . 114

1 FreeBSD kernel results . 135

2 Label-0 kernel results . 136

3 Label-s kernel results . 137

4 Label-l kernel results . 138

ix

LIST OF FIGURES

Figure Page

2.1 Distributed denial of service model 21

2.2 A sample chain of remote connections 26

2.3 Incoming and outgoing network traffic can no longer be related be-
cause data is transformed. 27

3.1 The contents of File 2 are influenced by User A 35

3.2 Given the origin of the involved entities, what is the origin of the new
file? . 38

4.1 Information flow for each operation and the final label sets 55

5.1 Data flowing through a channel . 88

5.2 The main kernel data structure for labels 94

5.3 FreeBSD kernel functions for socket I/O 98

5.4 Output from the user influence test from both user sessions 105

5.5 Output from the location information case study 107

5.6 An ssh session with location labels 108

x

ABSTRACT

Buchholz, Florian. Ph.D., Purdue University, August, 2005. Pervasive Binding of
Labels to System Processes. Major Professor: Eugene H. Spafford.

It is desirable to be able to gather more forensically valuable audit data from

computing systems than is currently done or possible. This is useful for the recon-

struction of events that took place on the system for the purpose of digital forensic

investigations. In this document, we analyze what kind of information is desired and

what is lacking in computing systems. We then propose a mechanism that allows

arbitrary information from a system to be propagated based on causality influenced

by information flow. We further discuss how to implement such a mechanism for the

FreeBSD operating system and present a proof-of-concept implementation that has

little overhead compared to the system without label propagation.

1

1 INTRODUCTION

It is desirable to be able to gather more forensically valuable audit data from com-

puting systems than is currently done or currently possible. This is useful for the

reconstruction of events that took place on the system for the purpose of digital

forensic investigations. In this document, we analyze what kind of information is

desired and what is lacking in computing systems. We then propose a mechanism

that allows arbitrary information from a system to be propagated based on causality

influenced by information flow.

1.1 Background and Problem Statement

Security mechanisms on computing systems, such as intrusion detection systems,

access control, and audit facilities rely on the information that is available on the

system on which they are deployed. The information that is available on computing

systems about the events that occur, however, did not evolve from the need for good

security data but rather from the need to manage the available shared resources of

the system among its users. If the need arises to investigate an incident, as part

of a forensics investigation or incident response, the amount of information that is

actually stored on a permanent basis is often further reduced, making it difficult

to draw sound conclusions from them. Most of the effort to date in the digital

forensics community has been in the retrieval and analysis of existing information

from computing systems. Little has been done to increase the quantity and quality

of the forensic information on computing systems.

An operating system’s main function is to administer the limited available re-

sources to the programs that request them. Thus, much of the information a system

keeps about its processes and objects is related directly to the task of administering

2

those resources. A large part of this information is kept for reasons of access control.

Other important security concerns do not play a prominent role. While processes

usually carry a user identifier, it may be unclear whether this user is truly responsible

for the actions the process performs. Furthermore, there is no notion at all about

location, or origin, of a system’s processes and objects. From where was a session

initiated? Where did a file come from?

Third party extensions exist that add more information for the purpose of ac-

cess control [106] but also for detecting policy violations [56, 118], adding a sense

of location [30, 106] or more general security audit mechanisms [60, 101]. Logging

facilities such as syslog for UNIX and the Event Viewer mechanism for the Win-

dows platform may record extra information about events as they occur. However,

most of these extensions lie outside the system itself, which means that they may

be subject to tampering. Event logs need to be correlated to establish any causal

relationship between events. This is at best a tedious task, but may even turn out

to be impossible in certain situations because not enough information is recorded or

propagated.

When adding information to a system, the goal is to preserve event relationships.

From a security perspective, one wants to determine answers to questions such as

“who is responsible for events?” or where the entities that caused the events are

located in the world (or network). To achieve this, it is not sufficient to simply have

one user identifier per process or file, or introduce a location field. This is because a

principal acting within a system is influenced by other principals or by the contents

of objects such as files. This causality is governed by the information flow among

principals and objects on the system. A principal communicating with another

principal may influence/force/ask/trick/signal the latter into performing some sort

of action. The same is true for the content of an object that a principal accesses. This

dissertation presents a model that allows the system to bind arbitrary information in

the form of a label to its principals. Labels are then propagated to other principals

and objects on the system as information is exchanged between them. Depending

3

on the nature of such a label, e.g. user identity or location information, valuable

audit data can be created on a system. This is especially useful for digital forensics,

intrusion detection, network traceback, and access control.

The information output by a principal can be described as its observable actions.

In many cases, these outputs are triggered in response to the principal’s inputs, i.e.

the information entering the principal. Thus, we may say that certain inputs cause

certain outputs of a principal. We will give a more detailed discussion of causality

in Section 4.1.

In our work, labels are propagated based on information flow between subjects.

This includes cases where one principal (or more) controls the actions of another.

Our approach differs from traditional information flow analysis methods in the way

that we do not attempt to determine how information actually is exchanged but

rather how information could have been exchanged. We will focus on two categories

of information that may be desired during an investigation but current operating

systems cannot supply. These two categories are user influence and location infor-

mation (host causality [12]).

Location information is especially important for the area of network traceback

[10], where the goal is to trace attackers back through the network to the ultimate

source of an attack. As we will show in Chapter 2, existing research only takes into

consideration data obtained from a network perspective, neglecting traffic transfor-

mations that can be performed on a host to obfuscate any relations among network

packets or streams.

1.2 Thesis Statement

It is possible to add significantly useful audit information to a system with little

computational overhead by binding labels that convey information such as user iden-

tity or location information to principals on the system and propagate those based

on how information flows between principals and objects.

4

1.3 Document Organization

This document is organized into six chapters, including this introductory chapter.

Chapter 2 gives an overview of the problem and discusses related work. Chapter 3

addresses the question of what kind of audit information is desired on computing

systems to aid in forensic investigations. This reflects work regarding the relation

between audit data and file system metadata for forensic purposes [13]. In Chapter 4

we present a model that can be used to obtain some of the information that is desired

but currently cannot be collected [14]. Chapter 5 discusses how to implement the

model for the FreeBSD platform and show an actual proof-of-concept implementation

and results. We give concluding remarks, discuss the limitations of our approach and

outline future work in Chapter 6.

5

2 BACKGROUND AND RELATED WORK

Computing systems are generally not designed with security in mind. While op-

erating systems exist that conform to the Orange Book’s [31] security divisions of

B-2 (Multics, VSLAN, Xenix), B-3 (XTS-300), and A-1 (Boeing MLS LAN, Gemini

Trusted Network Processor, Honeywell SCOMP), these are not widely distributed

and limited in their usability. Other approaches such as Microsoft’s efforts to secure

its Windows XP platform and the SELinux project [64] are intended to enhance se-

curity on the system, but inherit the design from their “ancestor” operating systems.

Because of the lack of systems designed for security, the amount and quality of audit

data that is useful for digital forensics, network traceback, or intrusion detection is

small. This chapter gives an overview of what kind of information is inherently avail-

able by current computing systems, and what research has been done to improve the

amount, quality, and integrity of audit data. We further give an overview of network

traceback research and explain what data is lacking in that area. Finally, we discuss

past research in information flow analysis to establish how our approach differs from

previous work.

2.1 System Information

When gathering audit data on a system, we are interested in information that

describes the events that took place within the system. This data can then be used

to detect policy violations, profile system behavior, or to reconstruct what events

occurred and how, if the need arises. Audit information can either be present at run-

time, or it can be preserved in permanent objects. The information that is kept in

the system’s long-term storage can either be recorded explicitly in the form of audit

logs, or it can be a byproduct of a system object’s meta information (e.g. file system

6

metadata). In the latter case the meta information might not have been stored with

the intent of creating audit data about the system, but the very nature of describing

some of the attributes about the object may lead to conclusions regarding events

that involved the object itself.

When a computer system is running, and while non-persistent objects reside on

the system, the amount of available audit information is at its largest. Running

processes on a system carry with them information about the programs they are

executing, the users who executed those programs, open files and sockets, etc.

Valuable audit information may be lost when network connections or file de-

scriptors are closed, processes terminate, or data that is not needed anymore for

the immediate execution of programs is discarded. In some cases information may

persist in the system memory for a certain amount of time [36], but eventually the

information will fade away. For this reason, certain information is stored on a more

permanent basis. This is either done in log files, or implicitly by the system through

meta information associated with long-term storage objects.

In the following we will give a brief overview of the sources of audit information

on a system and what kind of information is available.

2.1.1 Log Files

The most obvious location to preserve audit data on a system is by storing them

in the system’s long-term storage objects (files) as log files. These log files can

originate from the system itself (e.g. user login events, access control violations,

firewall data, or changes in the system’s configuration), or applications can supply

log information about the events they can witness. In either case, the information is

stored in files, which inherently brings with it the danger of tampering or deletion.

Sometimes logs may be protected by cryptographic mechanisms [92] or by the more

common techniques of being written to write-only media or being sent to a more

secure central logging facility. In general, however, this is not commonly done.

7

Many operating systems provide some sort of logging facility for system events.

For the UNIX-like operating systems, this is the syslog(3) facility and for the more

recent versions of the Windows operating systems the Event Viewer system keeps a

Security log, a System log, and an Application log. Programs outside the system may

also choose to add log entries to those facilities as is frequently done by intrusion

detection systems, firewalls and network daemon processes.

Tcpwrappers [106] is a tool that allows a system administrator to set up ac-

cess control policies for accepting network connections for well-known services based

on where those connections originate. Apart from authenticating network connec-

tions tcpwrappers can also be used to collect extensive log information about the

connections, whether they are accepted or rejected.

Tripwire is a tool developed by Kim and Spafford [56]. Tripwire monitors changes

in the contents and metadata of a list of file as well as the creation and deletion of

new files, and compares the observed behavior against a system policy.

Denning and MacDoran proposed an access control mechanism based on GPS

location information [30]. The GPS information is used to grant or deny access to

system services, but one can easily imagine extending the approach to logging the

information about those accesses.

Zamboni describes how to embed small modifications into system and application

code to act as sensors that record the actions they observe [118]. The information is

logged and then analyzed to detect known intrusions. Previously unknown intrusions

that exhibit patterns similar to the known intrusions can be detected that way, as

well.

A more thorough analysis of audit data on systems is provided by Kuperman [60].

His work classifies audit sources into categories of how they may be utilized, such as

intrusion detection and computer forensics. The problem of how events logged by

different sources on a system correlate, and how this may not be captured by the

individual audit logs is not discussed, however.

8

Apart from their vulnerability to tampering, log files are recorded at the time

when the event occurred, but it might be unclear at that point how certain events

relate to each other. To receive a more accurate picture of past events, log file entries

have to be correlated, which is a tedious and complex undertaking. Furthermore,

sometimes correlation is impossible because it may not be decidable which event(s)

might have caused other events to take place. This might be because insufficient

information is recorded, but also because information gathered by one program can-

not be accessed or interpreted by a different one. Having the information of both

sources available together to describe an event would yield more precise conclusions.

For example, tcpwrappers might record the information about a session from a re-

mote location while Tripwire detects an access violation of one of its policies in the

system during the same time interval. When analyzing the log entries it remains

unclear whether the access violation was caused as a result of the remote session.

2.1.2 File System Metadata

A valuable source of information about past events on a system is the long-term

storage of the system. In many cases, additional data is associated with long-term

objects, from which conclusions of past system events may be derived.

Most computing systems have some type of long-lived data storage that may be

examined for evidence. The usual organization of this storage is comprised of files,

directories, and metadata. For the remainder of this document we will assume such

an organization. We define metadata as all the data in the file system that describes

the layout and attributes of the regular files and directories. This includes attributes

such as timestamps, access control information, and file size, and also information

on how to locate and assemble a file or directory in the file system. This latter

information contains pointers to data blocks, or even entire blocks used as internal

nodes of lookup data structures such as B-trees.

9

File system metadata was not originally designed to be used for the purpose of

reconstructing events that occurred on the system. Anderson [3] was the first to

utilize such data for threat monitoring. He proposed to utilize System Management

Facilities (SMF) records. These records were commonly used by mainframe server

operating systems, such as IBM’s OS/360.

In the 1960s most computing tasks were performed on mainframe computers, with

OS/360 one of the dominating operating systems. Information stored on the servers’

disks described the entire batch job of a user. The data for the jobs came from punch

cards or tape media. The batch job information was kept in records, which described

different aspects about the job, some describing the user data (which can be seen as

a file). This included file type, minimum and maximum size, creation, access, and

modification times, but also information about the job itself such as running times,

duration and resources utilized. Compared to the metadata of current systems, there

was more information available for the purpose of analyzing system events. This

information is still maintained on systems at this date, but usually not recorded or

only in a temporary fashion such as the proc file system for UNIX.

Multics was the first operating system that supplied a hierarchical file system,

which is generally considered as the ancestor of most common file systems. Daley

and Neumann describe in the Multics file system design paper [23] the need for users

to store their data within the computing environment itself as opposed to storage

media such as cards and tape. The user would have complete control and ownership

of his data as well as the metadata. They formulated the following design objec-

tives: “Little-used information must percolate to devices with longer access times,

to allow ample space on faster devices for more frequently used files. Furthermore,

information must be easy to access when required, it must be safe from accidents

and maliciousness, and it should be accessible to other users on an easily control-

lable basis when desired.” [23] To determine how frequently information was used,

they proposed an access timestamp. The need for modification and creation times

came from the file system’s backup system, which would commit newly created and

10

modified files to tape backup. This is the original motivation for the use of the MAC

(“Modified, Accessed, Changed”) times. To be able to allow other users to access

files, they proposed the inclusion of an access control list plus permissions (modes)

for each file. All remaining metadata had to do with the actual on-disk layout of a

file.

UNIX was introduced in the early 1970s [85] and its file system was strongly

influenced by Multics. The metadata for a file was stored in an inode and it contained

the file’s location and size, its type (directory or file), the three timestamps, and the

access control information. The latter was comprised of the user and group identifier

and protection bits as all modern UNIX variants and derivatives use them.

MS-DOS emerged in the early 1980s. Its file system, FAT [69], keeps track of

the file type, size, location, and the timestamps. The space reserved for timestamps

varies between 2 and 4 bytes, which results in differences in granularity. For example,

the access time is only measured in days. Because DOS did not have any notion

of a user, no user or permissions information is stored with FAT. The Windows

operating system at first inherited the FAT file system, but when the limitations of

FAT became too much of a problem, NTFS was introduced. NTFS carries detailed

user and permission information as well as modified, accessed, created, and changed

timestamps.

Much previous work has been done in the area of versioning file systems. Version-

ing file systems store past versions of files in the file system and also the metadata

associated with those versions. However, the primary focus here lies in data recovery

and undoing of write operations. Systems including AFS, Plan-9 [80], and WAFL al-

low for setting of checkpoints for files on a periodic basis. The Cedar file system [44]

as well as the RSX, VMS, and TOPS-20 operating systems create new versions of a

file for each modification, but have limitations as to how many copies of a file may

exist and simple heuristics to decide what versions to delete after that. The Elephant

file system [90] also provides the ability to keep a long-term or even complete history

of a file. However, the long-term history is only achieved by retaining user-defined

11

landmark versions and space considerations are not discussed for the complete his-

tory option. Furthermore, the versions kept of the files are focused on content only,

ignoring metadata such as times of access and modification.

2.1.3 Digital Forensics

The area of digital forensics is concerned with the investigation of an incident

after it has happened. For this purpose, digital evidence is gathered from the system

and used to support hypotheses a forensic investigator may have about the incident.

Such an investigation may be as simple as locating incriminating material, but in

its most complex case, a reconstruction of all the past events on the system may be

desired. In this section, we present the current state of digital forensics and discuss

where shortcomings are, before we go into more detail about desired information for

forensic investigations in Chapter 3.

Casey and Palmer define forensic as “... a characteristic of evidence that satisfies

its suitability for admission as fact and its ability to persuade based upon proof (or

high statistical confidence).” [20]. When applying this definition to digital forensics,

one can see that the area consists of contributors from a wide spectrum of disci-

plines and backgrounds. Apart from computer science, digital forensics is relevant

to practitioners of disciplines such as law, law enforcement, politics, or standardiza-

tion bodies. Literature in the field of digital forensics thus has much material to cover

and needs to address a diverse audience including digital crime scene technicians,

digital evidence examiners, digital investigators [20], as well as lawyers, attorneys,

judges, politicians, developers, and researchers.

Much of the current literature and guidelines for digital forensics focuses primarily

on data retrieval and availability of information on existing systems. Given the

diverse target audience and the different levels of expertise in computing, one of the

main objectives is to teach practitioners the basic procedures of evidence retrieval

and analysis on computing systems. Naturally, future research in the field of digital

12

forensics cannot be addressed in as much detail as desired by the research community,

although more recent publications also discuss research. Most of the current work

explains how to recover data from a system in one form or the other. In respect

to data about system events, some of the work also discusses the forensic value

and/or quality of the information that is found. By forensic value we understand

the possibility to draw conclusions about events on the system from the data. For

example, timestamps have a high value from an event reconstruction perspective

because they allow an ordering of file operations into a timeline. This is provided

that the timestamps have not been tampered with and that the system’s clock is

correct. Access control information on its own, however, holds less value from an

event reconstruction point of view, because it generally only reflects static system

policies, and does not provide information about individual events. The information

that can be derived from access control information leads to a (group of) user(s)

that may have had access to an object on the system. At this point further evidence

(e.g. in the form of timestamps or login data) is needed to draw any conclusions.

Under forensic quality we understand how trustworthy the information is. Is it easy

to tamper with the information on the system? For example, on some operating

systems a file’s access and modification timestamps can be arbitrarily set by its

owner.

For some instances of forensic literature, the discussion of evidence retrieval is

limited to a description of where important system files are located and how to use

tools that recover deleted files [22, 113]. Metadata is not discussed at all or only

in the form of timestamps [113], and no critical discussion is given about the value

of the forensic information. Other publications focus in great detail on the issue of

information hiding and retrieval without mentioning file system metadata or issues

such as how to obtain time, user, or location information [15].

Some of the current forensics literature actually addresses the value of file sys-

tem metadata in the form of MAC times and user information [19, 59]. However, a

critical discussion about the quality of the information is lacking. At some part of

13

the discussion timestamps are presented as a powerful means to reconstruct events.

However, either no critical discussion is given [19], or the whole value of timestamp

information is undermined by statements such as: “Altering the modify and access

times in an inode is simple, but not every suspect knows how to do it” [59]. The

notion of an “owner” of a file is mentioned [59] but the term “owner” is not explained

and may lead to incorrect assumptions about the relationship between a user and a

file. A more thorough discussion about event reconstruction is given by Casey [20].

The actual techniques in terms of functional, relational, and temporal analysis are

described on a higher level than what information a system may (reliably) provide.

However, the author makes it clear that timestamps may be altered and discusses

techniques to detect the tampering or deduce the correct times of events. Carrier

and Spafford [18] use the term characteristics of a digital object, the set of data

and metadata associated with the object, in their event reconstruction model. This

reflects the need for reliable metadata information for event reconstruction. They

do not, however, discuss what the nature of these characteristics could or should

be. Mohay et al. dedicate an entire chapter to research directions and future devel-

opment [70]. Topics such as data mining, text categorization, authorship analysis,

steganography, and cryptography are covered. In their section on evidence extrac-

tion they address the difficulty associating collected data from various sources with

events on the system. They give a framework to correlate existing data on a system,

whereas the purpose of our work is to analyze what data can be added and how its

forensic quality can be maintained.

All of the surveyed literature only describes the information that can be obtained

from existing systems and this is their intended purpose. File recovery is the main

focus, but a few documents elaborate on the value of timestamps or user informa-

tion. In our survey of literature in the field we encountered no discussion about the

requirements of future systems with respect to digital forensics and what type of

meta information beyond MAC times and user information is desired. The discus-

sion shows that the digital forensics community is aware of what tasks need to be

14

performed and also aware of the fragility of digital evidence. What is lacking is an

analysis of what information is necessary to perform those tasks or make them easier

to perform, and further what kind of desired information can actually be obtained

from a computing system.

2.2 Information Flow Analysis

Keeping track of extra information in a computing system about events at the

location where they occur is typically merely a problem of allocating storage for the

information, when recording it. Recording the event or the nature of the event at

its source is not a problem (e.g., a user modifying a file or a process receiving data

from a specific remote location). However, events may influence other events and as

processing of data potentially results in new events, the roles of the earlier events

get lost because the information is no longer available to the entities observing the

new events. If we want to keep track of which events influenced others, we need to

examine how information flows within the system.

The area of information flow analysis is concerned with determining how infor-

mation is propagated within a system. The paths of how information flows describe

a causal relationship: if information flows from A to C via B, then A has caused B

to communicate with C. Some research in information flow analysis is concerned in

how to restrict information flow between subjects and objects, while other research

tries to determine how the information actually does (or will) flow.

2.2.1 Information Flow Policies

Information flow policies describe how information is supposed to be accessed or

modified on a system. This usually implies a partitioning of the resources and sub-

jects of a system into different classes, that form a hierarchy or lattice. Information

flow policies are concerned with describing how access to and propagation of data

on the system is allowed. Usually, the enforcement of the policies are left to access

15

control mechanisms and the analysis of the actual information flow of the system is

left to be performed by other techniques.

The Bell-LaPadula Model

The Bell-LaPadula Model [4] is based on military classification of data. The

model has subjects, objects and security classes, the last having some sort of or-

dering associated with it. Subjects possess security clearances and objects security

classifications.

The following two properties define secure flow of information in the model: a

subject can only read an object’s content if the subject’s security class is at least

as high as the object’s, and contents of objects may be written only to objects

of at least as high a security class. The first property, called the Simple Security

Condition, makes sure that subjects cannot directly access objects for which they

are not cleared. The second property, called Star Property, further makes sure that

a subject with clearance to access an object, that is classified at a particular class,

does not generate a new object with the same contents as the original object but

with a lower classification.

The Bell-LaPadula Model ensures that no unauthorized access of the objects of

a system takes place. It thus protects the confidentiality of data on a system.

The lattice model introduced by Denning [27] is an extension of the Bell-LaPadula

model. Here, security classes together with a class combining operator ⊕, a greatest

lower bound operator ⊗ and a flow relation between classes form a lattice, which is

used for access control between processes and objects.

The Biba Model

The information flow model defined by Biba [7] focuses on data integrity rather

than confidentiality. The model consists of subjects, objects, and ordered integrity

levels.

16

The following rules maintain the integrity (trustworthiness) of objects: a subject

can read an object only if the subject possesses the same or a lower integrity level as

the object; a subject can write to an object only if it possesses the same or a higher

integrity level as the object; a subject may execute another subject (program) only

if it possesses the same or a higher integrity level as the subject (program) being

executed. The first rule makes sure a subject can only access information that is at

least as trustworthy as the subject itself. The second rule ensures that the subject

can only modify objects that are not more trustworthy than the subject itself. The

third rule ensures that a subject may not make other subjects, that possess a greater

integrity level, act on its behalf.

The Chinese Wall Model

The Chinese Wall Model [8] addresses both confidentiality and integrity on a

system. While the model was developed to guide information flow within a business

environment, it may also be applied to other systems. In the model resources on a

system a grouped into both company datasets, (CDs) and conflict of interest classes

(COIs). A CD contains all the data in the system that belongs together, e.g. objects

belonging to the same company or project. A COI is a collection of datasets whose

information must not be shared with other members in the class. Under the Chinese

Wall Model, a subject S may access an object only if the only other objects that S

had previously accessed are in the same CD as the object, or if none of the objects S

had previously accessed is in the same COI as the object. A subject may also access

an object if the object is sanitized. A subject S may modify an object if the subject

has read access to the object, and if the object is in the same CD as all the objects

S can access.

For the Chinese Wall Model to work, a set needs to be maintained for each

subject, that contains all the objects that were ever accessed by the subject. There

17

is a concept sanitizing of an object, after which the object may be removed from the

subject’s access set.

Denning’s Information Flow Model

Denning formally defines an information flow model FM = (N,P, SC,⊕,→),

where N is the set of objects on a system, P the set of processes, and SC a set of

security classes. The ⊕ operation is a binary class-combining operation that defines

the class of the result of (binary) operations between members of the security classes.

E.g. if a ∈ A and b ∈ B then the result of any binary function on a and b belongs to

security class A⊕B. The → operation is a flow relation between security classes. It

defines the permitted information flow. If information is allowed to flow from class

A to class B, then A→ B.

An information flow FM is secure if none of the sequences of operations on a

system violates the → relation. Furthermore, SC, →, and ⊕ form a universally

bounded lattice of security classes.

Summary

The models we have discussed above merely formalize the system policy in regard

to how information is supposed to flow. It is up to individual systems to make sure

they adhere to the model. This may be a difficult task when considering the trade-

off between security and usability on a system. In particular, to make a system

practical, concessions have to be made in terms of confidentiality and integrity. In a

practical environment subjects need to have more rights than they are allowed under

the Bell-LaPadula and Biba models. Nevertheless an observer might be interested

in how actual information flow has taken place to deduce if undesired accesses or

modifications have occurred. Information flow analysis addresses this problem. Here,

either the possible or actual information flow of programs is analyzed to either enforce

18

information flow according to the model or to detect violations of the information

flow policy. In the following, we will discuss a number of such approaches.

2.2.2 Static Information Flow Analysis

A substantial amount of research has been done in the area of static informa-

tion flow analysis [89]. The primary focus lies in assuring data confidentiality and

integrity when using certain programs on a system. One approach is to use tech-

niques from type systems for controlling information flow. Security identifiers are

attached to variables and expressions and used to verify the information flow at

compile time [45,46,75,93,108]. Other approaches use semantic-based security mod-

els [52, 107], analyzing end-to-end program behavior, often related to some sort of

noninterference [43, 66] policy.

Denning [28] and Denning and Denning [29] discuss compiler-based mechanisms

that verify information flow against a security policy. With this, one is able to certify

that given programs do not violate the security policy.

Static information flow analysis is a powerful method to determine how infor-

mation is propagated by which principals. However, all the programs running on a

system need to be analyzed to verify that they adhere to the information flow policy.

Even though advances are made in the automation of the tedious work, analyzing

programs is still a time-consuming and expensive task that increases with a pro-

gram’s complexity. Furthermore, one can only be certain about those programs on

a system that have been analyzed, which takes away the ability to execute general-

purpose programs. This limitation is acceptable in many scenarios where knowledge

of the exact information dissemination in a system is crucial.

2.2.3 Dynamic Analysis

Some work exists that is intended to track runtime information flow of pro-

grams [110]. Here it is proposed to incorporate Denning’s compiler-based informa-

19

tion flow concepts [28, 29] into the Java virtual machine to keep track of every user

identifier associated with the running program and then enforcing access control at

the time when system calls need to be made. A weakness of this approach is that

the user identifiers are vulnerable to tampering when kept in user space. Also, no

implementation or results have yet been published.

The Data Mark Machine developed by Fenton [37] associates a security class label

with every variable on the system and is able to analyze information flow at execution

time. However, it is a highly abstracted machine not suitable to monitor information

flow on a more complex system with the types of channels we will describe in this

document.

Other work utilizes virtual machines that record certain checkpoints of the system

state they are emulating, thus allowing a post-event analysis of how information

has disseminated through the system. This work is either motivated by intrusion

analysis [34, 42, 57] or operating system and program debugging [58, 111, 112].

The information flow analysis techniques we discuss here find their application

in specialized environments. To have a complete understanding of how information

flows, all the programs running on the system need to be analyzed. The alternative to

this is to limit the execution of programs to an environment where their actions can

be monitored. Thus far, research in dynamic information flow analysis has utilized

program interpreters of virtual machines for that purpose, which comes at a high

performance cost. In this document we will present an alternative that allows us

to track information across a system dynamically without the performance penalty

incurred by virtual machines or interpreted programs.

2.3 Network Traceback

A special case of tracking information through computing systems is network

traceback. The research area of network traceback is concerned with locating the

true location (in a network sense) of an attacker. This may be hosts that perform

20

denial-of-service attacks, or it may be a host from where a user is logged in directly

and performs malicious actions, either within that host or to other hosts through

the network. Within network traceback, there are currently two major areas with

different objectives and approaches for solutions. One area tries to determine the

source of individual datagrams that take their paths through the network. The

other area attempts to correlate streams of network traffic, which are observed at

different locations within the network. The following gives an overview of past

research performed in both areas.

2.3.1 Packet Source Determination

The Internet Protocol Suite (TCP/IPv4) [81], which is used throughout the Inter-

net and various intranets does not provide a mechanism to authenticate datagrams.

The only field within the IP datagram header that gives an indication about the

origin of a datagram is the source address field, which is a 32-bit long Internet ad-

dress. However, routing of IP datagrams is typically only performed based on the

destination field within the datagram, and the source field is rarely inspected by a

router. Both IPv6 [26] and IPSEC [55] provide source authentication, but are not

widely used in TCP/IP networking.

In normal operation, a host receiving packets can determine their source by di-

rect examination of the source address field in the IP packet header. Unfortunately,

this address is easy to falsify, making it simple for attackers to send packets that

have their source effectively hidden. This is more common for one-way communica-

tion, such as the UDP and ICMP packets used in denial-of-service attacks, but has

been used in attacks using TCP streams in which the TCP sequence numbers are

guessable [6, 72]. There has been significant research in how to locate the source of

such packets, primarily motivated by distributed denial-of-service (DDoS) attacks in

early February of 2000.

21

Generally, DoS attacks work by consuming a limited amount of a certain resource

at the victim. This could be bandwidth, CPU time, or memory. The objective is to

consume as much of that particular resource so that normal operation is no longer

possible. A DDoS attack usually focuses on consuming network bandwidth and

uses multiple clients distributed over the network to perform DoS attacks. The

software and tools to perform DDoS attacks are widely available and easy to use.

The attack involves a series of master and client programs running on compromised

hosts throughout the network. A client program is used to generate as much network

traffic as possible and send it to the host. The master program is used to coordinate

the clients so that all of them start and end their attacks roughly at the same time.

Once the masters and clients have been set up, a master then can be used to direct

the client to send large amounts of network traffic to a single host on the network,

resulting in that single host to be overburdened with the amount of traffic it receives.

Sometimes, there are multiple master machines, which, in return, are controlled by

a controlling host. This hierarchical approach allows for an easy configuration and

synchronized execution of an attack from a multitude of compromised hosts from a

single machine. Figure 2.1 shows a simple DDoS model.

of traffic

Master 2Master 1

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6

Victim

Control Messages

Large amount

Figure 2.1. Distributed denial of service model

22

IP source address spoofing is not necessarily a requirement for a DoS or DDoS

attack, but usually spoofing is used to hide real addresses of the hosts used for the

attack. This could be because the attacker is a user on that host, or because the

attacker does not want to risk losing a compromised host that he could use for later

attacks.

While it is generally recommended that routers be configured to perform ingress

or egress routing [38], it is clear from continuing denial-of-service attacks [71] that

this is not widely done. There have been other methods proposed to perform filtering

to limit the effect of such attacks [50, 78, 116].

Router Approaches

Some methods add or collect information at routers to allow traceback of DoS

traffic. Rowe et al. developed the Intrusion Detection and Isolation Protocol (IDIP)

[88], where an IDS that recognizes an attack queries IDIP enabled devices (including

the router) about the source of the attack. The queries then cascade up until the

origin of the attack is located.

CenterTrack [100] proposes the use of special tracking routers within an au-

tonomous system that receive “interesting” datagrams directly from the edge routers.

At the tracking router, those datagrams may then be examined and handled accord-

ingly.

Cisco provides a public guideline as to how to perform tracing of DoS traffic by

analyzing router traces at each hop [21]. They propose compiling access list entries

that match the attack traffic to produce log output for manual inspection. Naturally,

this will only work while the attack is in progress.

Snoeren et al. have developed a Source Path Isolation Engine (SPIE) [94], which

enables traceback of individual packets. This is accomplished by a router that com-

putes and stores digests of the packets it forwards. Starting from the target of a

23

network attack, one can then create an attack graph by querying the data collected

at each router.

An approach that proposes the deployment of hardened networks across the In-

ternet was introduced by Zhang and Dasgupta [119]. Here, the border routers and

subsequent routers within an autonomous system (AS) mark the traffic they receive

by digitally signing them. Thus a DoS victim within the AS may reconstruct the

path the traffic took within the system and it is possible to filter the traffic at the

border router. Also, a cooperation between different ASs can lead to even further

tracking of the immediate source of the attack and contain it at that point.

Packet Marking

Other methods to determine the source of a DDoS attack add markings to the

packets to probabilistically allow determination of the source given sufficient packets.

Savage et al. propose a marking scheme for IP datagrams [91]. The authors

propose two main marking schemes, node sampling and edge sampling. Here, IP

datagrams are probabilistically marked with a single router’s IP address. A router

further down the path toward the destination may overwrite an existing marking and

thus the path a datagram takes has to be derived from the distributions of markings

from the incoming datagrams.

To solve the problem of where to store the marking information, the authors

developed a reduction scheme using XORs and hashes. Instead of sending the unen-

coded edge information, unique fragments of a larger identifying number are used to

mark the datagram. This comes at the cost of a slight deprecation of speed of conver-

gence and robustness, but allows storage in the space available. This technique was

further refined by Song et al., proposing an advanced marking scheme [95]. Their

work mainly focuses on improving the marking scheme so that fewer packets are

needed and overall computation time for the reconstruction path is reduced. Instead

of the router’s IP addresses, only hashes of those addresses are encoded. To address

24

the problem of false positives in Savage et al.’s scheme when there is more than a

single DoS attacker, different sets of hash functions are used at each router to keep

the probability low that two routers can compute the same hash value for the edge

information. Furthermore, an authentication scheme for the markings was added.

Dean et al. propose a different approach to encode the packet markings [25].

They encode paths between nodes by calculating the result of a polynomial with

the IP addresses of the routers and a multiplier that is passed along in the packet

as inputs. There is a trade-off between the number of packets needed to solve the

polynomial for the routers’ IP addresses and the amount of storage space needed for

the marking for each packet.

Doeppner et al. use IP’s record route option for the purpose of “router stamping”

[32]. Here, routers record their IP address with a certain probability into a random

slot available for the record route option in the IP header. With enough attack

packets available, a path to the source may be reconstructed. Adler describes the

tradeoff for general packet marking schemes between the size of the markings and

the number of attack packets needed to perform traceback [2].

Park and Lee show that there is a possibility that an attacker may inject false

markings into the network traffic, potentially leading an investigator to a false source

of traffic [77]. They show that there is a trade-off between the ability to trace back

the attack and the severity of the attack.

Control Messages

Several Internet Drafts [5, 114] address the use of ICMP messages for traceback

purposes. A new type of ICMP message is proposed, called a Traceback message,

that is sent by an Internet router. The message itself contains the previous and next

hop of the datagram from the router’s perspective as well as a timestamp and part

of the datagram that caused the ICMP message to be sent.

25

ICMP Traceback messages are caused by a datagram forwarded by the router

with a certain probability. The authors suggest a probability of about 1/20,000. The

message datagram is sent to the destination specified by the datagram that caused

the message to be sent with a time to live (TTL) of 255. With enough traffic going

to a particular destination, this scheme allows the destination host to reconstruct

the path traveled by the datagram using the TTL field as a distance measure. The

link information about the previous and next hops make it possible to reconstruct

a complete traceback chain to the source of large traffic volumes. Furthermore, the

drafts explore several authentication options, to prevent an attacker from sending

out bogus Traceback messages.

Much of the work presented above allows an investigator to locate the immediate

source of a DDoS attack. In many cases, the only benefit of this discovery lies

in the ability to contain the attack. Important questions, such as from where the

DDoS zombie was controlled and by whom remain unanswered. Even when fully

investigating the host that is running the DDoS zombie it is unlikely that an answer

can be found, as we discuss in Chapter 3

2.3.2 Correlating Streams

The other area of current network traceback research tries to correlate streams

of TCP connections observed at different points in the network architecture. The

motivation behind this work is that attackers often log in through a chain of compro-

mised hosts to launch an attack from the end of that connection chain. This chain

of hosts will hide the actual location of the attacker, as the victim sees only the last

hop in the chain. Law enforcement agencies investigating a break-in might be forced

to cancel their efforts when the trace points to a host out of the jurisdiction of that

agency.

The chain of TCP connections often consists of a series of interactive sessions

on the hosts utilizing remote login protocols such as telnet ssh, or rlogin. From

26

each remotely accessed host, the chain is extended by logging in to the next one.

Figure 2.2 shows an example of a connection chain.

attack data
Actual

location Host 1
Interim

Host 2
Interim

Victim
telnet ssh

Figure 2.2. A sample chain of remote connections

While early attempts by Jung et al. [53] have proven difficult to implement and

not practical (for a discussion on this, see Buchholz et al. [10]), recent research

focuses on what can be be deduced from information obtained from various fixed

checkpoints in the network.

Up to now, research addressing determination of the source of a connection chain

has mainly focused on correlating streams of TCP connections observed at different

points in the network. The initial work in matching streams constructed thumbprints

of each stream based on content [96]. While this technique could effectively match

streams, it would be ineffective in compressed or encrypted streams that are com-

monly used. Other work compared the rate of sequence number increase in TCP

streams as a matching mechanism, which can work as long as the data is not com-

pressed at different hops and does not see excessive network delay [117]. Another

technique, which relies solely on the timing of packets in a stream, is effective against

encrypted or compressed streams of interactive user data [120]. This work was orig-

inally intended for intrusion detection purposes but was also proposed as an effec-

tive method for finding the source of connection chains. While performing stream

matching might be effective in some cases, such methods rely on examining network

information, and might be vulnerable to the same methods that can be used to de-

feat network intrusion detection systems [82]. More recent work has examined the

effectiveness of attackers attempting to defeat stream matching by adding delay or

27

additional packets to the data stream, but did not propose a method of directly

matching streams [33].

Daniels describes a general reference model for origin concealment of network data

elements regardless of whether the motivation lies in packet source authentication

or stream correlation [24]. He defines internal and external monitors with respect

to a node (a host in the network) and describes algorithms for a passive origin

identification based on what the monitors observe. It is assumed that the internal

monitor possesses the capability to observe the relation between inputs and outputs

without specifying how this might be accomplished. The work we present in this

document will aid in addressing this problem.

Any attempt to correlate data streams entering and leaving a host strictly from a

network perspective can potentially be foiled by measures on the host to obfuscate

any relations between such streams. Through a sequence of arbitrary transforma-

tions regarding the properties of the data streams, a stream of incoming data can

be modified in such a manner that when data leaves the host, it is impossible in

the general case to say if there was a causal relationship between the two. Such

transformations include modification to the data itself, but also alterations in size

and timing information. Figure 2.3 illustrates those transformations.

Process

A
Process

B

Network traffic
entering system

Network traffic
leaving system

− stepping stone
− DoS attack data

− stepping stone
− DoS control data

TRANSFORMATIONS
via IPC, passive objects

− content
− timing

System

Figure 2.3. Incoming and outgoing network traffic can no longer be
related because data is transformed.

28

3 ADDING AUDIT INFORMATION

In this chapter we will discuss what kind of information is desired when performing

forensic investigations and event reconstruction [13]. In some of the cases we will

merely give suggestions as how to collect and store the information as it is readily

available but usually not recorded. We will also address the need for two types of

information currently not available with any operating system – user influence and

location information – and thus motivate the work described in the remainder of this

dissertation.

3.1 Types of Information

A recent gap analysis study for computer forensics tools by the Institute for

Security Technology Studies [49] shows that for Category 1 of the National Needs

Assessment – Preliminary Investigation and Data Collection – the section for oper-

ating systems is well-covered with existing tools that address the needs [48]. This

could lead to the conclusion that data collection for operating systems is a solved

problem, but this is not the case. The reason for this is that all the gap analysis

as well as other studies [48, 74, 86] are only addressing the retrieval of information

that is currently recorded explicitly for those operating systems. Apparently, the

question: “What information would you like to have available as a forensic inves-

tigator?” has not been sufficiently addressed in the forensic research community.

Part of the problem has been addressed by Kuperman [60], but the actual quality of

the information retrieved on current systems and its usefulness for forensic purposes

has not been addressed, nor has the feasibility of obtaining and storing the desired

information been examined.

We can categorize desired information into the following groups:

29

1. Information that is available to the system and recorded on non-volatile media.

2. Information that is available to the system but is not recorded.

3. Information that is not currently available to the system but could be made

available.

4. Information that is impossible to be obtained by a computing system.

A forensic investigator will normally only have access to the first kind of infor-

mation, or, if a live system analysis is performed, to the second kind. Most of the

literature and development in the field is only concerned with the information that

is actually present in the first category. We hold the opinion that it is the duty of

future research to explore in what manner more forensically relevant information can

be provided to an examiner in a feasible fashion. Considering the design of future

systems, it is useful to first evaluate what the desired information is, whether and

how it can be obtained by a computing system, and if it can be stored in a reasonable

fashion. This way, some or all information from the second and third categories could

be moved to the first one, plus we will gain an understanding of what is possible.

The exact kind of information and the scope of its storage we are discussing in this

dissertation will differ from system to system. One can hardly require all operating

system vendors to start modifying their products to record more data for forensics,

or force users to enable such logging. However, there are many cases where extra

information is desirable, be it to be able to show due diligence, or to more quickly

discover if a system was compromised or accessed in an unauthorized fashion.

In the following, we shall examine which extra information is desirable from a

forensics point of view, analyze how the currently existing information satisfies those

wishes and how feasible it is to obtain and store information that is currently not

collected on a system.

30

3.1.1 The Relevance of Metadata for Forensics

If it were possible to record a system’s state – register values, memory, timers,

network events, interrupt information, etc. – for every single clock step, one could use

that information to deterministically replay all events that took place on the system.

The answers to most questions an investigator might have could be answered, albeit

in a tedious and time-consuming fashion. Even if it were possible to record all

that information it still would not be feasible as the amount of time necessary to

record the information on a storage device slows the system down several orders of

magnitude [35]. As this approach is not feasible, we have to utilize snapshots of

the system’s state instead. A snapshot reflects the system state at a given discrete

point in time. In addition to knowing the actual state of the system for those

points in time, one might be able to draw conclusions about the state changes that

occurred between two given snapshots. Such an approach using external logging of

processes, files, filenames, and system calls, was implemented by King and Chen [57].

That approach was further refined to allow a virtual machine layer between the

operating system and the user space to record select snapshots of the system state

that can be used to replay events on the system [58]. That approach was designed

for debugging operating systems as the penalty for utilizing a virtual machine and

the space overhead might not be suitable for production type systems.

Taking a snapshot of the entire system’s state or large parts thereof on a frequent

basis might be feasible for critical systems or debugging. In the general case, limited

storage capacity and performance considerations prohibit this practice. For this

reason we need to consider a further reduction of information quantity and frequency

of recording, preferably through an already existing mechanism on the system. The

hope is that through an audit trail of individual changes to parts of the system

(small deltas in the system state) we obtain sufficient information to understand the

changes in the system’s state leading up to the current one.

31

Files play an important role in the operation of most computing systems. Usually

the operating system itself as well as the boot mechanism are comprised of files.

Program executables, configuration data and startup scripts, user information, as

well as application data are stored in files. Therefore looking at files gives a rough

view of information flow, file accesses can show what programs were executed when,

and file modifications show what was altered on a system. The operations on the

system’s files are only a subset of the system state. However, for the reasons discussed

above, they can yield answers to many questions of interest to a forensic examiner.

Furthermore, recording meta information about a file’s operations as they occur is

a mechanism that introduces little computational overhead. Thus a file’s metadata

seems a logical place to record our subset of the system’s state. The metadata

associated with a file can be seen as the characteristics of a digital object as discussed

by Carrier and Spafford [18].

Information recorded by system or user programs may aid the forensics investi-

gator during the analysis. System logging facilities such as syslog or shell history

files and third party programs such as Tripwire [56] or tcpwrappers [106] provide

valuable data for a forensic investigation. However, programs running outside of the

system’s kernel space may not have access to the necessary information. Plus, all

the information is stored in files, which are subject to deletion or tampering. Other

approaches that modify the kernel [11,17] either do not store the added information

on a permanent basis, or do so in log files, as well. Other approaches, such as Sun’s

Basic Security Module for Solaris [101] store extensive audit information in sequen-

tial log files using an audit token to relate records to each other. The audit records

can become quite complicated and large in size, and space management can become

complex [39]. Furthermore, the information is not stored directly at the object of

interest (i.e. the file) but rather operations on files have to be reconstructed from

all of the audit records on the system. By storing the desired information directly

as file system metadata we gain the following benefits:

32

• The information is automatically collected and stored by the system: all the

information that is available to the system is available to be recorded.

• The information is automatically collected without the penalty for setting up

external logging mechanisms.

• The information is directly stored with the object of interest. It is not necessary

to correlate various system logs to obtain the desired information.

• Tampering with the information is not as simple as tampering with a file. If raw

disk access is not allowed by the operating system, the recorded information

is protected from all users. Even if raw disk access is allowed a malicious user

still has to navigate the file system to get to the information. When modifying

or deleting it he needs to be careful not to destroy any data that is crucial to

the successful operation of the system.1

3.2 Desired Information

As can be seen from the overview given in Chapter 2, current operating systems

and file systems were generally not designed with digital forensics in mind. On most

Unix-like systems, the metadata associated with a file that holds forensically usable

information is only 22 bytes, of which 16 are timestamps. In this section we will

discuss the types of information that is desired from a forensics point of view.

When performing a forensic investigation on a computing system an investigator

needs to reconstruct as many events and actions that took place on the system as

are necessary to draw unambiguous conclusions. This may be as basic as locating

contraband material on a system and determining when and how it got there, but

even that is not a simple task. In its most complex form such an investigation will

attempt to reconstruct all events that took place on a system. This could be to

1This may easily occur due to race conditions on an active system.

33

investigate a break-in or crimes committed by an insider. The main questions a

forensic investigator has to ask are: who, what, when, how, where and why.

The who question is concerned with what user is (or which users are) responsi-

ble for certain actions on the system. What addresses what actions actually were

performed on the system, when over which time interval they took place, and how

in what manner those actions were executed. The where question is to determine

both where the responsible users were located when they initiated the actions as well

as where the data on the system, i. e. files, came from. Finally, the why question

is concerned with the motives that lie behind the actions. As a computing system

cannot know the intentions of its users the answer to this question is one that the

investigator must infer from the answers to all the other ones.

3.2.1 Who Did It?

The question of who is responsible for certain actions or the existence of data can

be important in the course of an investigation. This holds especially true for systems

with a large number of active users, such as a server in a thin-client environment

or systems that offer network portal services. Most systems utilize some sort of

authentication mechanism – usually a login procedure requiring a user name and a

password – to bind a user identifier and often a group identifier to a process or a

session.

The user and group identifiers for processes and files are also commonly referred

to as the “owners” of those instances. It is thus tempting to classify everything that

bears such an identifier as the result of that particular user’s action. However, the

original purpose of those identifiers in operating systems lies in access control, not

true ownership. The only thing that may be deduced by looking at the identifiers

is that a process bearing a particular identifier has been granted the permissions to

an object that is associated with that identifier. Thus, in most of the computing

systems known to this date it is difficult or even impossible to determine the user id

34

of the subject that is truly responsible for actions. The information might be gained

by correlating other information, such as login times or typical user activities, with

the times at which the file operations occurred, but this process is tedious and may

not lead to the correct conclusions as we discuss below. If the correct information is

stored directly with the file, no correlation work will be necessary.

From a digital forensics perspective the question of who “owns” a file is irrelevant.

We want to know who created, modified, accessed, and deleted it. So who performed

those operations on a file? In many cases the user id of the file will be equivalent

with the identity of the user responsible. There are exceptions, though. For example,

a file may be created by User A who then changes the user id of the file to User B.

In Unix, this may be done with the chown command. Such commands are used to

transfer permission rights for an object from one user to the next, but once executed

any notion of the creator of a file is lost to the system. For the remaining operations

(modify, access, delete) it would make sense to look for the responsible users within

the set of users that hold the proper permissions for that file. This set may be quite

large (up to any user on the system), and also when the permissions or user and

group identifiers change, the information deduced would be incorrect.

Simply introducing new fields that associate user and group identifiers with the

various timestamps (MAC times) can solve the problems addressed above. However,

this will not be enough to solve other ones where a user’s actions affect a file. For

example consider two processes, one controlled by User A and the other controlled

by User B as illustrated in Figure 3.1. Process A reads data from File 1. The two

processes communicate using interprocess communication (IPC) and User A supplies

the data it read from the file to B’s process, which writes the data into File 2. The

creator of the file clearly is User B. However, User A also played an important role in

its creation and content. Current systems do not have the ability to detect User A’s

effect on the file.

35

User
A

User
B

File 1 File 2

Read Write
IPC

Figure 3.1. The contents of File 2 are influenced by User A

If we extend the example to more processes and users that play a role in the

creation of the file we can observe that a fixed size field to hold user information

for a file is not sufficient (unless it is large enough to hold information about all

users). Also, if multiple users’ processes communicate with each other, how can the

system tell which ones played a role in a file operation and which ones did not?

It turns out that this problem is actually undecidable for the general case. As the

system is generally unaware of the information flow within a process, the only thing

that can be done is observe its inputs (interprocess communication in this case) and

outputs (the creation of the file). Deciding which input caused an output to occur

is equivalent to solving the Halting problem. The Halting problem [102, 103] states

that, given a Turing machine M and its input x, it is undecidable in the general case

to determine whether M halts on x.

While this problem cannot be solved, there are two ways to manage it. The first

is to only allow programs to run on the system whose information flow has been

determined through methods such as static analysis. In this case it is known what

data from which input affects the output and the system has this information readily

available. But while we obtain the correct desired information, we lose the ability

to run any general program because of the requirement to perform information flow

analysis for each program we allow to run. In addition to the fact that information

flow analysis can be time-consuming, for some programs such an analysis might not

36

be possible because of randomness or race conditions. The second way to avoid the

problem is using an approximation. Because we cannot tell which exact inputs affect

the output, we can simply assume that all of them had an effect. This approach will

result in some incorrect extra information being kept, but it also assures that no

correct information is discarded. From a digital forensics perspective, this is a good

approach for two reasons: if information about a particular user is not associated

with a file, we can be sure that that user did not have anything to do with the

file’s operation; also, information that is present and might be false is better than

no information being present at all, especially if the amount of false information is

kept small. We will focus on obtaining this kind of information in the second part

of this dissertation.

By the discussion above we can see that the “who” information actually falls into

Category 4 of our classification: it is impossible in the general case to obtain the

correct information. We do believe, however, that the approximations mentioned

in this section are good enough in most cases and thus justify the recording of this

information.

3.2.2 Where Did That Come From?

There are many cases where it is desirable to know from where a particular file on

a system originated. The problem of defining location is not trivial, however. Apart

from the TCP/IP based network location information we used as origin information

in previous work [11, 12], location information may take on many different forms.

The GPS location information proposed by Denning and MacDoran [30] may be

used as a location identifier. Location information may also be as simple as “local vs.

remote”, where “local” means information coming from a source or device physically

connected to a system, such as a keyboard, mouse, or scanner. Information entering

the system from a network through system services, such as ssh, telnet, ftp, http,

or rpc would then be classified as “remote”. Another example of location information

37

could be the structure of an organization. The organization may be split into different

offices, the offices into departments and departments into smaller divisions. This

forms a location hierarchy that also may be used to form location identifiers and

groups. An Internet draft proposed by Leach and Salz [63] discusses Globally Unique

Identifiers (GUIDs). A GUID has a fixed size of 128 bits and contains time and node

(network location) information. The generation algorithms specified in the draft

ensure that collisions among GUIDs occur only with a low probability.

Location information on a system regarding from where processes or files orig-

inated or were influenced is desirable because it can be used for system analysis

(forensics, intrusion detection), access control (enabling policies based on location

information), and the network traceback research discussed in Section 2.3

When locating contraband material, location information may lead further down

the chain of distribution, which may result in follow-up investigations. When un-

known files are found on a system, information about where the file came from may

give clues as to what kind of file it could be, plus – if the file is malicious code – the

information could be used trying to locate the author. Furthermore, some files may

immediately be classified as benign on a system if their origin is from a trustworthy

source. For example, this might be the operating system vendor’s installation media

for system binaries. With current systems, no such origin information is available.

In some cases the origin of files may be deduced by correlating log information –

such as mount times or web logs – with file timestamps. This information will only

be available for origins that are logged on the system, plus some file systems do not

have reliable creation timestamps and the information may be lost.

Where do files on a system come from? A user can create one by typing on the

console, they can be read from storage media such as CD-ROMs or floppy disks,

they can be downloaded from a network, they can be transfered from devices such

as digital cameras or scanners, etc. Current computing systems have no notion of

the origin of their files (or processes). The reason for this might lie in the fact that

the systems from which the more recent ones descended were mostly self-contained

38

and isolated units with their only inputs coming from a console or card readers.

However, the problem of determining a file’s origin is not as simple as the above

examples might suggest. By definition a computer computes data from other data.

The fact that a system produces new data makes what we mean by origin of a file

(or data in general) more complicated.

Consider the following example: A user had typed and saved a C-source-code

file on the console. He later logs in from a remote location and compiles it with

a compiler that was installed from the operating system vendor’s distribution CD.

He also links in a library that was downloaded from an open source web site (see

Figure 3.2). Taking into account the origins of the files and processes that played a

role in the creation of the resulting executable, what should its origin be? Ideally

we want to capture the origin of all data involved in the generation of the new data.

User
Session

Remote
192.168.0.1

Website Console

Source: ?

Compiler

Executable

Library C source−
code

OS CDRom

Figure 3.2. Given the origin of the involved entities, what is the
origin of the new file?

A specialized compiler that can take origin into account and knows which sources

are used in the creation of a file could correctly keep track of all origin information.

39

For general unknown programs that produce files, the same problem as with user

influence applies: It is an undecidable problem. However, the same approximate

solutions that can be used for the user influence problem can also be applied here.

As with the “who” information, the answer to the “where” question also falls

into Category 4 of our classification. Maintaining origin information is similar to the

problem of keeping track of who influenced whose actions on a system and the work

in the second half of this document will also apply to origin information. Given that

there is no location or origin information kept at all in existing systems, we believe

that adding support for keeping and recording it will add substantial support for

forensic investigations, especially in those cases where tracing back to an author of

code or creator of contraband material is of importance.

3.2.3 When Did What Happen?

All commonly used file systems associate certain timestamps with their files and

directories. The original purpose of timestamps lie in archiving and backup of files,

but many tools serving different purposes, such as find [104] or make [105], utilize

them.

The timestamps available for the ext2 file system [16] are modification, access,

change, and deletion times. The first three are commonly referred to as MAC times.

NTFS has an altered (A), read (R), MFT changed (M), and creation time (C).

As can be seen, different file systems have different kinds of timestamps available.

Furthermore, confusion may arise from the different naming of the metadata fields.

What is MAC in ext2 would be ARM in NTFS when using the Windows terminology.

There is no deletion time in NTFS and there is no explicit creation time in ext2.

This latter fact is a common misunderstanding about the file system that emerged

from UFS: the “C” in MAC time is often thought of as the creation time. Even

the Linux source code refers to the ctime field in ext2 as “creation time.” This is

incorrect, as the original term is change time. This timestamp field is updated every

40

time there is a change in the inode information (a change in the metadata itself).

When a file is created, the ctime is set to the time of creation because in a sense

the metadata has been changed. If the file’s metadata changes after that the ctime

is updated again. A simple change in permissions via chmod, or user or group via

chown or chgrp is sufficient for updating the ctime field. In most cases the ctime will

be equivalent to the creation time, but there is no guarantee for that and a forensics

investigator needs to be aware of that fact [41].

For the Unix and Unix-like operating systems the POSIX standard [47] defines

the timestamps, their meaning and when they are updated. The required timestamp

fields under POSIX are modification, access, and change times. An overview of which

Unix system calls change what timestamps can be found throughout the literature

(e.g., see Stevens [97]). The specific time when an update has to occur is ambiguous,

however. The standard specifies that the timestamp fields need to be marked for an

update and that “[a]n implementation may update fields that are marked for update

immediately, or it may update such fields periodically.”

While some of the names for timestamp fields are unambiguous, others have

room for interpretation. A creation and a deletion time are straightforward in their

meaning, but what exactly is meant by access, read, modification, and alteration

time? Simply because a metadata field is named a certain way does not mean that

it really conveys the information suggested by that name. When is a file considered

accessed or read?

As the semantics of the timestamps are not specified by any standard they are

open to interpretation and different operating systems’ implementations can show

different behavior as to when the timestamps are updated. This may be sufficient

for using timestamps with tools such as make and find or for backup purposes. From

a forensics point of view a clear definition of what the timestamps mean is of much

greater importance. Furthermore, different operating systems or file systems may

keep different kinds of timestamps. As we have shown above, Unix-like operating

41

systems usually do not keep a real creation time, whereas Windows using NTFS

does.

The above examples of using chmod or chown to update a file’s ctime show a

side-effect of how timestamps may be tampered with using access control operations

that affect the file’s metadata. There are other commands, such as touch in the

Unix world that allow a user to arbitrarily modify the timestamps. To obtain audit

data of good quality in the sense we defined earlier, creation, modification, and

access timestamps should not be subject to alteration by any user. If modifiable

timestamps are needed for certain tools or procedures such as backups, then they

should be separate from the timestamps we use for forensics.

All current file systems have in common that only the latest respective time is

kept. This is understandable for reasons of space constraints, but not satisfying from

a forensics perspective. Modern journaling file systems, such as etx3 and the Reiser

file system [83] record more timestamps as part of the journal. However, one cannot

choose which timestamps are kept – only the metadata of the latest operations are

preserved. Ideally, all operations on a file should be recorded. A creation and a

deletion time will only require one field, as the operation is only performed once per

file. Operations that modify or access a file occur quite frequently, however, and

there is no upper limit in the amount of space required to record these occurrences.

The GUIDs mentioned in the previous section also contain time information.

Depending on what kind of location information one is interested in the GUID could

replace time and location metadata fields. In this case the GUID is not bound to

the file itself but rather to the individual actions to the file. However, as the above

discussion shows, files may have many individual sources and events from the same

sources may occur at different times. In these cases a coupling of location and time

may not be desired. If the system does support GUIDs, though, the file metadata

would be a good place to store it and use it for propagation purposes.

The “when” information falls into Categories 1 and 2 of our classification: some

of it is recorded already, whereas the rest is available to the system but not recorded.

42

For a forensic investigator it would be beneficial not having to worry about what

timestamp means what on a particular system and which timestamps are available.

For this, standardized semantics of timestamps as well as a standard set of times-

tamps available are needed. The necessary information is present on all systems.

While recording all of it might be infeasible, currently it is not possible to record the

information at all, even if desired. A more fine-grained set of recording options as

discussed below may help to adjust any particular system’s requirements.

3.2.4 How Did It Happen?

The manner how an operation was performed on a file can be of importance to

an investigator. By “how” we mean what controlling agent or executable program

was used to perform the operations. It should make a difference for the course of

an investigation whether a program named explorer.exe was used in the creation of

contraband material on a system, or if the program was backdoor.exe instead. These

programs can be seen as agents of the process’s user to perform tasks on the system.

The role of user agent may be further delegated to other programs, creating a chain

of agents. For example, command.exe may invoke explorer.exe, which in turn may

invoke winamp.exe to access an MP3 file on the system.

Having access to the entire chain of user agents for an operation on a file obviously

can be valuable information in an investigation to reconstruct events on a system.

Apart from scenarios described in the above example it also enables an investigator

to identify automated system service routines that manipulate files such as system

cleanup, log rotations, file indexing, etc.

It is necessary to record the chain of user agents because there are cases where

ambiguities occur even with complete access and modification information available

for a file and all executables on the system. This may happen, when several exe-

cutables are accessed by the same process prior to performing the file operation.

43

In addition to simply referencing the name of (or a pointer to) an executable in

the chain, it may also be desirable to know what the executable’s version or patch-

level is. For this purpose, a cryptographic checksum could be included in the chain

information so that the value can later be verified against a white-list of known

executables.

This kind of “how” information is currently not available on the common com-

puting systems, but could easily be made accessible by keeping a stack of agent

information, given that there is sufficient space available to keep the information.2

Each time a user agent invokes another one, the information is pushed onto the stack

and each time it finishes the information is removed. Thus, this information falls

into Category 3 of our classification.

3.2.5 What Was Done to the File?

In addition to the metadata described in the previous sections the actual nature of

the modification to a file is also important. Ideally, the entire chain of modifications

from a file’s creation through its current state should be available.

Alternatively to storing the actual modifications of a file, only the hash values

of the different versions can be kept. This way it is at least possible to identify

version changes for well known files, such as kernel versions and upgrades or patches

to program binaries.

The “what” information is readily available on current systems but changes in

files usually are not recorded. This falls into Category 2 of our classification. In

general, for this type of information the same considerations are true as for the

“when” data: it is probably infeasible to record everything, but even if desired the

information can currently not be recorded at all.

2This is similar to the space management issues we address in Chapter 4 for labels.

44

3.2.6 User Influence and Location Information

The types of information we discuss in the previous section are, for the most

part, readily available on the system and only need to be stored appropriately. This

is most certainly true for the when and what information. The information required

to answer the how question can be gathered by keeping track of an program-calling

hierarchy and recording the agent chains accordingly. It should not be difficult to

amend a system to include this behavior.

As we have shown, the who and where questions are more difficult to answer.

The information that we require is not available on current computing systems. For

the remainder of our work we will discuss an approach that can help obtaining the

desired information: user influence and location/origin information. We will not

discuss any further the problem of storing all the data we discuss in this chapter as

part of file system metadata, as this is well beyond the scope of this document.

45

4 A MODEL FOR LABEL PROPAGATION BASED ON CAUSALITY

Motivated by the lack of ability to track user influence and location information

through a computing system, in this chapter we introduce a model that allows the

propagation of arbitrary labels based on how information flows on the system. This is

a generalization, moving from user and location information to general purpose labels

as the propagation mechanism works for arbitrary information that we associate

with entities on a system [14]. First we define the term causality with respect to

information flow on a system, then we introduce the general model, address space

management issues, discuss properties of our model and then present case studies.

4.1 Causality

Consider a system that is comprised of active principals and passive objects.

We define a principal as the active agent on a system that performs actions and

interacts with other principals. A principal may act as an agent of a human being, on

behalf of other principals, or the system itself. Principals can create other principals;

create, access, and modify passive objects; and exchange information with other

principals through communication channels. We use the term subject to denote

either a principal or an object.

Principals have inputs and outputs for the purpose of interacting with other

principals and accessing passive objects. Observable changes in a principal’s state

are defined by its outputs. Such a change can be caused by many factors: implicit

measures within the principal itself, input from the system, input from another

principal, input from an object, or any combination of the above. There might be

other changes of state for a principal. These may include hardware failure, electrical

surges, or cosmic radiation. As these are non-deterministic, unpredictable events,

46

those types of change of a principal’s state will be ignored by our model. In the

case that such an event triggers an output, the model will incorrectly blame one of

the principal’s inputs for the output (or none if there had not been any observable

inputs).

We define a given input to be a cause for an observable change in state of a

principal (and thus the cause for an output), if a change in state observed in the

output is different based on whether or not the input is provided. This is consistent

with the principle of non-interference [43, 66].

When all the internals of a principal are known and deterministic, it is possible

to analyze exactly which inputs cause what outputs as we mentioned in Section 2.2

However, generally this is not the case. If we view a principal as a black box and

only observe its inputs and outputs, even in the simple case when there are only

two inputs and one output, it is undecidable [102, 103] to determine which input (if

any) caused the output, for the general case. This can easily be proven by reducing

the following well-known undecidable problem to our case: given a Turing machine

M as well as the two strings x and y, determining if M(x) = y is undecidable [76].

Also, Rice’s theorem [84], which states that, for any non-trivial property of partial

functions, the question of whether a given algorithm computes a partial function

with this property is undecidable, can be applied to this.

To avoid the undecidability issue, we utilize a pessimistic heuristic: if an output

can be observed for a principal at time t, we consider all previous inputs of time

ti ≤ t as potentially having caused the output. Thus any information exchange

between principals – direct or indirect – has a potential effect on successive outputs

of a principal. This approach will yield false positives as certain inputs may not have

been the cause of an output. However, this ensures that any input that did cause

an output will be considered.

47

4.1.1 Labels

In the following, we will present a model to follow information flow between prin-

cipals based on causality. For this purpose we introduce an operation that binds a

label to a principal. By label we mean an arbitrary string of bytes whose interpre-

tation depends on the given application of the model. Labels are bounded in size

and may either be ordered or unordered. Labels are then propagated to principals

and objects based on causality: if an input causes an output, the label of the input’s

source needs to be propagated to the input’s target. By propagation we mean some

function of the label and any existing labels of the target (the target’s label set),

resulting in a new label set for the target.

This approach differs from the information flow analysis methods we discussed

in Section 2.2. It is a dynamic solution without the overhead incurred with the

techniques previously discussed. We achieve this at the penalty of being imprecise,

meaning we do not track the exact information flow but rather all possible ones.

The dynamic approach gives us the advantage of being able to execute arbitrary

programs on a system without having to analyze their information flow first. There

is no need for an interpreter-based runtime environment or virtual machines, which

incur a performance penalty. Also, no special hardware is needed to track information

flow. Using labels and propagating them dynamically at run time means that we

perform a forward propagation of meta-information. As a result, we can observe the

information immediately with the principals and objects on a system, without having

to perform any reconstruction steps as required in other work, where the operations

of a system are recorded and later analyzed [57]. With our approach it is possible

to not only determine labels sets of any given principals and objects, but also to

determine if a given label is present at what entities without having to reconstruct

the information flow explicitly for all entities on the system.

The ability to bind arbitrary labels to principals allows us to address a variety

of scenarios where it is important to track not only how information propagates on

48

a system but also what kind of information. It further allows us to focus on only

the information that is relevant for the scenario. Such use of labels allows us to help

solve the problems described in Chapters 2 and 3 as we will demonstrate in the case

studies in Section 4.5.

4.2 A General Model of Label Propagation Between Principals Based on Causality

The model described below is used to propagate labels according to information

exchange between active subjects (principals) in a system. A label needs to be

propagated from one principal to another if information is exchanged between the

two of them. The idea is that if one principal causes the information flow of another

principal, then the former’s labels should be propagated to the latter.

A single bit of exchanged information may be sufficient to control further in-

formation flow for a principal. Therefore, not only transfer of data itself, but also

success or failure of certain operations between principals must be considered as

information exchange, as they count as inputs for the principals.

Information exchange between principals is performed through communication

channels that are established between the two participants. As the communication

between principals does not necessarily have to be synchronized there may be an

arbitrary time delay between one participant’s write and the other’s read operation.

In a sense, channels are abstract passive objects that act like FIFO queues from which

principals read and write. Channels in this model are uni-directional, meaning that

only one principal may write to the channel and the other can only read from the

channel.

Information between subjects may also be exchanged indirectly through storage

objects (objects). By storage objects we mean shared objects on a system that are

used to store data either temporarily or on a long-term basis. As objects may be

used to transfer information, labels from principals also need to be associated with

storage objects that are modified or created by them, and be propagated to principals

49

accessing those objects. Here, the concept of information exchange is less restrictive

than above, as only a modification of the object or actual data transfer from the

object needs to be considered. The mere existence of an object may also be used to

exchange information between principals one bit at a time: one principal can create

or destroy an object while a second principal tests for the object’s existence. If the

two principals synchronize their operations, they can exchange information this way.

This is the type of channel Lampson defines as a storage channel [61,62]. Therefore,

a successful open operation to an object for read or write operations must also be

considered information exchange. However, it is not necessary to propagate all labels

associated with the object, rather, it is sufficient to propagate the label set of the

object’s creator at the time the object was created. This is because only the creator

of the object can control the storage channel described above.

We define the following sets, which are all countable and unbounded1:

L: set of labels

P : set of principals

O: set of storage objects

C ⊆ {P × {P ∪ O}} ∪ {{P ∪ O} × P}: set of ordered pairs 〈i, j〉 ∈ C if and only if

a communication channels exists between i ∈ P and j ∈ {P∪O} or i ∈ {P∪O}
and j ∈ P .

label(): O∪P → 2L, a function that given a principal or an object returns a subset

of L that is called the label set of the principal or object. The function label(φ)

will always return the empty set ∅.

clabel(): O → 2L, a function that given an object returns a subset of L that is

called the creator label set of the object. This function denotes the label set of

the object’s creating principal at the time of creation.

1Subsequent sub-models may have bounded label sets

50

Channels between two principals are uni-directional and function according to

the consumer-producer model as a FIFO queue. Instead of actual data items, it is

sufficient for this model to require only that the label set associated with the data

is contained in the channel. For this purpose, we define two operations on channels:

enqueue(c, l) adds a label set l ∈ 2L to the FIFO queue of channel c ∈ C.

dequeue(c) returns and removes the next label set l ∈ 2L from the FIFO queue for

c ∈ C. If the queue is empty, the empty set is returned.

Each channel c ∈ C possesses a capacity cap(c), which denotes the number of

items the channel can hold. The enqueue operation for a channel will fail if its

capacity has been reached. This in return will cause the operation that caused the

enqueue operation to fail as well. For channels between a principal and an object

the data transfer is simpler and can be viewed as atomic and instantaneous.

P , O, and C are unordered sets, whereas L, and the sets returned by label(), and

clabel() may be ordered. The latter sets are ordered iff L is ordered. In the latter

case label and clabel’s ranges are no longer 2L, but rather the set of sorted subsets

of L.

We further have a mapping on label sets, update : 2L × 2L → 2L. The mapping

determines how label sets are updated as two processes exchange information. This

function must be defined for sub-models derived from this model.

Below we define the operations on the sets described above (P, O, C, and L). An

operation consists of two parts: an optional precondition and an action part. If there

is a precondition associated with an operation, it must be fulfilled for the operation

to succeed. Otherwise, the operation fails. Operations without a precondition will

always succeed. Only a principal may perform an operation. To avoid a cumbersome

notation the principal that performs the operation can either be implied from the

operation itself, or, if necessary, is explicitly mentioned.

51

create(p1, p2) Principal p1 creates principal p2. The label set of p1 needs to be

inherited by p2:

P := P ∪ {p2}

label(p2) := label(p1)

create(p, o) Principal p creates object o. The object’s label set as well as the creator

labels set need to be inherited from p:

O := O ∪ {o}

clabel(o) := label(o) := label(p)

open(p1, p2) The channel 〈p1, p2〉 is opened between principals p1 and p2. The

channel has the direction from p1 to p2, meaning that p1 can perform write

operations and p2 can perform read operations on the channel. Whether the

operation of opening the channel succeeded or not can already be viewed as

the exchange of 1 bit of information: success or failure. Therefore, the label

sets of both principals need to be updated at this point:

C := C ∪ {〈p1, p2〉}

label(p1) := label(p2) := update(label(p1), label(p2))

open(p, o) The channel 〈p, o〉 is opened between principal p and object o. P can

write to the object. A successful open indicates that o actually exists, so the

object’s creator label set needs to be updated with the principal’s:

C := C ∪ {〈p, o〉}

label(p) := update(label(p), clabel(o))

open(o, p) This is analogous to the previous operation, using channel 〈o, p〉 and p

having read access instead.

52

write(p1, p2, n) Principal p1 writes n data items to the channel 〈p1, p2〉, i.e. it con-

sists of n enqueue operations. In this case the channel 〈p1, p2〉 needs to be

open.

Precondition: 〈p1, p2〉 ∈ C

repeat n times:

enqueue(〈p1, p2〉, label(p1))

write(p, o) Principal p writes data to object o. In this case the channel 〈p, o〉 needs

to be open. Because o is receiving information, o’s label set needs to be updated

with p’s:

Precondition: 〈p, o〉 ∈ C

label(o) := update(label(p), label(o))

read(p2, p1, n) Principal p1 reads and removes n data items from channel 〈p2, p1〉,
i.e. it performs n successive dequeue operations.. In this case the channel

〈p2, p1〉 needs to be open. Because p1 is receiving information, p1’s label set

needs to be updated with the ones read from the channel:

Precondition: 〈p2, p1〉 ∈ C

repeat n times:

label(p1) := update(label(p1), dequeue(〈p2, p1〉)

read(o, p) Principal p reads data from object o. In this case the channel 〈o, p〉
needs to be open. Because p is receiving information, p’s label set needs to be

updated with o’s:

Precondition: 〈o, p〉 ∈ C

label(p) := update(label(p), label(o))

53

close(p1, p2) The channel 〈p1, p2〉 between principals p1 and p2 is closed. Both prin-

cipals may interpret this event, so this can be seen as a 1-bit information

exchange. Both principals’ label sets need to be updated with each other’s

label sets:

Precondition: 〈p1, p2〉 ∈ C

C := C − 〈p1, p2〉

label(p1) := label(p2) := update(label(p1), label(p2))

close(p, o) The channel 〈p, o〉 between principal p and object o is closed. No infor-

mation is exchanged.

Precondition: 〈p, o〉 ∈ C

C := C − 〈p, o〉

close(o, p) This is analogous to the previous operation, using channel 〈o, p〉 instead.

addlabel(p, l) Label l is bound to principal p. L needs to be added to any existing

labels in p’s label set:

label(p) := label(p) ∪ {l}

destroy(p) Principal p is destroyed. All open channels involving p are closed.

P := P − p

{〈x, y〉 ∈ C|x = p ∨ y = p} : close(x, y)

destroy(o) Object o is destroyed. All open channels involving o are closed.

O := O − o

{〈x, y〉 ∈ C|x = o ∨ y = o} : close(x, y)

54

A sequence of operations is an ordered list of operations, in the order they oc-

cur. At any given discrete time interval ti exactly one operation is allowed and

that operation is considered atomic. To extend the model, it may be necessary to

define composite operations from the basic operations given above. For example,

the opening of a bi-directional channel between principals p1 and p2 may be de-

fined as {open(p1, p2), open(p2, p1)}. This new operation is also atomic. There is

also an initial state of the system, which at a minimum consists of P = {p0} and

label(p0) = {}.

Example:

Let P = {p1, p2, p3, p4}, with label(p1) = {A} and label(p3) = {B}, O = {o1},
clabel(o1) = label(o1) = {C}, and update = ∪. The following shows a sequence of

operations and its effect on the label sets:

op1: create(p1, o2) clabel(o2) = {A}
op2: open(p1, o2)

op3: write(p1, o2) clabel(o2) = {A}
op4: close(p1, o2)

op5: open(o2, p2) label(p2) = {A}
op6: read(o2, p2)

op7: close(o2, p2)

op8: destroy(p1, o2)

op9: create(p2, p5) label(p5) = {A}
op10: open(o1, p5) label(p5) = {A,C}
op11: read(o1, p5)

op12: close(o1, p5)

op13: open(p3, p5) label(p5) = {A,B,C}
op14: write(p3, p5, n)

55

op15: read(p3, p5, n)

op16: close(p3, p5)

op17: open(p5, p4) label(p4) = {A,B,C}
op18: write(p5, p4, n

′)

op19: read(p5, p4, n
′)

Principal p1 creates object o2, and writes some data to it. Principal p2 then reads

data from o2, after which o2 is destroyed by p1. P2 subsequently creates principal

p5, who then reads data from o1. A communication channel to write data from

principal p3 to p5 is then opened and data is being transmitted. After that, another

communication channel is opened, this time between p5 and p4, and p4 is receiving

data from p5. At the end of these operations, both p4 and p5 carry labels from p1

(A), p3 (B), and o1 (C). P2 carries the label from p1. Figure 4.1 illustrates how

information flows in this example.

P3 P2

P5 P4

P1
A

op
1−4

op
5−7

op
9

op
13−16

op
8

op
17−18

op
10−12

B A

A

A,B,CC

O

O
2

A,B,C
1

Figure 4.1. Information flow for each operation and the final label sets

On a computing system, the above example could illustrate the following scenario:

The labels A, B, and C are location information and p1 is the process of a malicious

56

user logged in from location A and p2 is the process of a local user on the system who

has privileged access rights. In operations op1 through op4 the user creates a script

that when executed will create a new process and start the program stored in object

o1, which was created earlier by a user from location C. The user then dupes p2 into

executing this script (let’s say the path of the superuser contains “.” as its first

entry and the script has a name of a common command and the superuser executed

the command while in the directory that contains the script). The access of the

script by the superuser is shown in operations op5 through op7 and the spawning of

a new process with the access rights of the superuser and execution of the program

in operations op9 through op12. In the meantime the user for p1 gets rid of the script

with op8.

During operations op13 through op16, another process, p3, that earlier received

some network traffic from location B sends some control information to the new

process p5, who in return (in op17 and op18) opens a communication channel to p4

(lets assume p4 actually lies outside the computing system) to perform some sort

of attack that required privileged access rights (sending bad routing information for

example).

When the attack is detected and investigated the labels associated with p5 list

all the locations that played a role in the attack and can be investigated further.

It could be possible that p5 is terminated after the completion of the attack, but

system logging policies such as “log all network traffic and process information from

privileged ports from processes that have a non-empty label set” can record the

necessary information for post-incident analysis. Note that anything that p2 does

after being duped into executing the script is now “tainted” with a label A from p1

and and the system can be considered compromised after operations op5 through op7.

Any child processes and objects created as a result of that need to be investigated

as well.

57

4.2.1 Covert Channels

Principals may exchange information via the use of covert channels. Covert

channels have been largely discussed in previous research. They can be divided into

storage and timing channels as discussed by Lampson [62] and Kemmerer [54]. For

communication taking place between a sender and a receiver through a covert chan-

nel, both must have access to an attribute of a shared resource and the sender either

the ability to cause a change in the attribute (storage) or the capability of modu-

lating the receiver’s response time for detecting a change in the attribute (timing).

Covert channels can be identified through the shared resource matrix as defined by

Kemmerer [54] or via source code information flow analysis techniques discussed in

Section 2.2.2.

Most of the research in covert channels focuses on systems with different security

levels (e.g. low and high). The goal is to detect and restrict information flow between

security levels (from high to low) through the covert channel. For such purposes

covert channels between subjects that also have legitimate channels available to

communicate can be declared not harmful and thus be ignored. Also, Moskowitz

and Kang [73] propose a mechanism called the “pump” that limits the bandwidth

of possible covert channels that exist in low-to-high communication. For our model

the bandwidth of a covert channel is of no interest because a single bit of exchanged

information between two principals may cause further information exchanges to other

subjects and thus labels need to be propagated.

The model we describe above takes into account some possible covert channels,

other forms have to be excluded from our model as a system cannot reliably decide

whether or not communication actually takes place. Covert channels that use the

success or failure of establishing a communication channel, use lock availability,

existence of files, or encoded information in the actual data exchange are handled

by the model. Also, probabilistic covert channels [89] that convey information by

changing the probability distribution of observable data are handled because it does

58

not matter if there is more information encoded in information flow we already

detect. However, covert channels that use a system’s availability of resources, such

as CPU, total memory, power, or bandwidth to encode messages for information

exchange cannot be detected by this model. Such covert channels lie outside of the

scope of this work and will not be considered further.

4.3 Space Analysis

The general model from the previous section is not concerned with any space lim-

itations a system might have regarding labels associated with principals and storage

objects. There is sufficient space to store infinitely many labels with principals and

objects, and channels have unlimited capacity. This is not a practical assumption.

The need for space restrictions for derived sub-models depends on two factors: the

nature of the label set L and the definition of the label-updating function update.

A fixed or bounded number of elements for L automatically implies a bound for

the maximum space requirements for each principal and object. Let |l| be the size

of label l in bits. Then we can define |L| :=
∑

l∈L |l| for any label set L. If L is

bounded, the maximum space needed for each principal and object is potentially |L|.
For example, if one wants to determine if information flow was caused locally or re-

mote, or from both possibilities (in whatever sense), then we have L = local, remote,

update = ∪, and |L| = 2. Only two bits are needed to store the labels at each

principal and object. Another example of this kind would be user ids on a comput-

ing system, whose number is usually bounded by system limitations. However, even

when L is bounded, the set might be so large that allocating |L| amount of space for

every principal and object is infeasible. We can extend the previous example and

instead of simply specifying “remote” we want to record a TCP connection consist-

ing of foreign IP address and port. The label set L is still bounded, as it consists

of the cross product of possible IP addresses and TCP ports. However, there are

59

232× 216 = 248 possible labels, which is too large an amount of space to be allocated

for each and every subject.

Sometimes, even though the label set may be large, it might still be possible to

allocate space for all the labels each subject may have to hold. This happens if the

label-updating function update is not an increasing function. For example, assume

we are binding color labels to our principals. If, instead of unioning the label sets,

update computes the color that is a result of mixing the colors involved, only one

single label needs to be stored with each subject. So even for 32-bit colors, resulting

in 232 possible labels, only 32 bits of space are needed.

If L is an ordered set, then the label-updating function may also consist of op-

erations such as min and max, which may further reduce the space requirements for

the subjects.

In the general case, however, we cannot assume that space requirements are

(reasonably) bounded and we therefore need to have a mechanism to manage the

available space. There are two factors to consider for space management: how

to distribute the available space and what to do if no further space is available.

Note that for channels there is an implicit space limitation caused by their inherent

capacity. An operation will fail if the operation on the channel fails because of

insufficient capacity.

For the actual space management we can combine subjects together into groups

and then allocate a fixed amount of space for each group. It is possible to imagine ev-

ery combination of principals and objects grouped together and this is equivalent to

partitioning a set of size n, where n = |P∪O|. There are Bn number of ways to parti-

tion such a set, where Bn is the n-th Bell number [87,109] and Bn = de−1
∑2n

m=1
mn

m!
e.

In the following we will describe how to adapt the above model to take space con-

siderations into account. In general, space limitations only affect the preconditions

of our operations, so we will not repeat all the operations but rather concentrate

on the relevant parts. Let S ∈ N be the total amount of space available for la-

bels and ℘(P ∪ O) be the set of all possible partitions of P ∪ O. For a specific

60

partition parti ∈ ℘(P ∪ O), where 0 ≤ i < B|P∪O|, we can assume without loss of

generality that parti contains k > 0 subsets g1, . . . , gk of {P ∪ O}. We call these

subsets resource groups. Let S1, . . . , Sk ∈ N be the space available for labels allotted

to groups g1, . . . , gk and
∑k

i=1 Si ≤ S. Furthermore, we have a mapping function

group : P ∪O → g1, . . . , gk, which, given an element from P ∪O returns the resource

group it belongs to. Finally, there is a function util : g1, . . . , gk → N, which returns

the utilized space for a given group. Technically, the updating of the util function

needs to be performed in the action part of our operations. We therefore assume

that it is updated implicitly so that we can still present only the preconditions and

not have to worry about cluttering up the notation. In the following we describe the

preconditions for space management for our operations:

create(pc, s): When a new principal or a new object s is created by principal pc,

one of two things may happen with regard to the space resource groups:

1. The subject s is assigned to an existing resource group gx. In this case gx

needs to have enough available label space to hold pc’s label set:

util(gx) + |label(pc)| ≤ Sx

gx := gx ∪ {s}

2. A new resource group gk+1 with available space Sk+1 is created for the

new subject s. In this case there needs to be sufficient space left to allow

the creation of the resource group:

|label(pc)| ≤ Sk+1 ≤ S −
k∑

i=1

Si

gk+1 := {s}

open(p1, p2): As the label sets of both principals are modified, there needs to be

sufficient space in both p1 and p2’s resource groups to hold the space difference

61

between the old and the new label sets. Let gx = group(p1) and gy = group(p2)

and x 6= y:

|update(label(p1), label(p2))| − |label(p1)| ≤ Sx − util(gx)

|update(label(p1), label(p2))| − |label(p2)| ≤ Sy − util(gy)

If group(p1) = group(p2) = gz, then:

2|update(label(p1), label(p2))| − |label(p1)| − |label(p2)| ≤ Sz − util(gz)

open(p, o) and open(o, p): The object’s label set is not affected by this operation.

P ’s label set is updated with o’s creator label set. Let gx = group(p):

|update(label(p), clabel(o))| − |label(p)| ≤ Sx − util(gx)

write(p1, p2): No label sets are modified by this operation. Only the channel

〈p1, p2〉’s capacity to hold label(p1) imposes an added precondition to this op-

eration.

write(p, o) Only o’s label set is modified and the resource group gx = group(o)

needs to have sufficient available space for the resulting label set:

|update(label(p), label(o))| − |label(o)| ≤ Sx − util(gx)

read(p2, p1, n) The label set of p1 is updated with the first n label sets contained

in channel 〈p2, p1〉. The resource group gx = group(p1) needs to have sufficient

available space for the resulting label set after the n updates. Let lsetj(〈p2, p1〉)
be an auxiliary function that returns the jth label set in the channel queue

without dequeuing it, and l a label set initially set to label(p1).

for i = 1 to n :

l = update(l, lseti(〈p2, p1〉)

|l| − |label(p1)| ≤ Sx − util(gx)

62

read(o, p) Only p’s label set is modified and the resource group gx = group(p)

needs to have sufficient available space for the resulting label set:

|f(label(p), label(o))| − |label(p)| ≤ Sx − util(gx)

close(p1, p2) This operation has the same space preconditions as the open(p1, p2)

command.

close(p, o) and close(o, p) No label sets are modified.

addlabel(p, l) The resource group gx = group(p) needs to have sufficient available

space to hold the resulting label set:

|update(label(p), l)| − |label(p)| ≤ Sx − util(gx)

destroy(p) All the preconditions for closing the channels containing p must be met.

destroy(o) No label sets are modified.

The above model for space management applies to any particular partitioning of

the subject set and their resulting resource groups. Two special cases stand out as

they simplify space management considerably: having a unique resource group for

each individual subject (local model) and having one global resource group for all

subjects (global model).

Local Models:

In this group of models we have k = |{P ∪ O}|. This means that each group of

g1 . . . gk contains exactly one principal or object. This means that new subjects may

only be created as long as
∑k

i=1 Si ≤ S and that the space Sj belonging to group gj

is only available to the one subject.

If storage space for labels is restricted on a per principal basis, it has the ad-

vantage that only operations involving principals with many labels are affected by

63

whatever means are taken to deal with a restriction violation. This may result in effi-

cient ways to identify and contain “misbehaving” principals that try to obscure their

label sets. However, the local restriction may unfairly penalize certain principals that

accumulate many labels in their normal course of operation. We call a model that

follows this approach a local model with respect to label space constraints.

Global Models:

In this group of models, we have k = 1, and g1 = {P ∪ O}. Furthermore it

seems logical to assume that S1 = S. All the available space is made available to all

subjects on an equal basis.

Principals that accumulate many labels during their normal course of operation

are no longer penalized more than any other principal. However, a single misbe-

having or even a normal process may now exhaust the entire resource pool for label

storage, affecting all other principals’ operations as well. Depending on how the

space restrictions are enforced this could easily lead to denial-of-service attacks or

label-washing. We call a model that follows this approach a global model with respect

to label space constraints.

4.3.1 Enforcing Space Constraints

Simply defining space constraints is not sufficient for describing a comprehensive

space management model as there are different ways to enforce the constraints. If

an operation violates one or more space constraints, there are two ways of dealing

with it: deny the operation or make space.

Strict Models:

If an operation is denied (i.e., it will fail) when its action would result in a

violation of the label space constraints, it ensures the correct binding of labels to

64

principals at all times. As labels are never dropped, or “unbound” from a principal

it follows that a principal was never bound to other labels at earlier points in time.

We call a model that follows this approach a strict model with respect to label space

constraints.

For certain applications of label propagation using a strict model is essential for

its correct behavior.

Loose Models:

To ensure that any given label set size stays below or at the size limitation, a

function is needed that reduces the label set size should an operation exceed that

limit. Taking this approach guarantees that operations will not fail because of label

size limitations. However, because the label set size will be reduced, labels, and thus

information will be lost. We call a model that follows this approach a loose model

with respect to label space constraints.

Depending on the definition of the label-updating function update and the label

set L, there might be an upper bound on the possible label set size, either for each

principal or for the entire system. If this upper bound is reasonable in size, a strict

model with that upper bound as the label space constraint can be utilized. This

will result in no labels being lost and no operations will fail because of label size

limitations.

The actual nature of the function that reduces the label set size can be manifold,

and it is beyond the scope of this document to address all cases. Possible variants

might be to delete the “oldest” labels, delete the “least important” labels, combine

specific labels into more general ones, etc.

Note that this reduction of label set size need not only involve only the resource

groups belonging to the subjects involved at the operation. It can be quite possible

that labels may be removed from “less important” resource groups and the space

sets S1, . . . , Sk be adjusted dynamically.

65

Another measure to free up label space is to create label hierarchies: well-known

labels that occur frequently together among many subjects of the system may be

grouped together into one meta-label. After the grouping only the meta-label needs

to be propagted and the mapping of labels to the meta-label kept once in the system.

As a disadvantage, all labels associated with the meta-label are now propagated

where in some cases only individual ones would have been.

Finally, any combination of utilizing strict and loose enforcement could be uti-

lized. Operations can be denied in certain cases, where in others it might be sufficient

to make space even at the cost of losing information. The exact enforcement strategy

depends on the application for the label propagation.

4.4 Properties of the Propagation Model

For the remainder of this document, we require that the label-updating function

update preserves the labels. An example of this is the set union operation, i.e.,

update = ∪. In general, we need to have s = update(t, l)⇒ l ∈ s; ∀t ∈ 2L, l ∈ L.

This allows us to address the problems from Chapters 2 and 3, because the labels

are not modified or dropped as part of the updating process. Furthermore, we define

a special set Pg ⊂ P of principals, which contains the principals that may generate

labels.

Such a group Pg of principals implies that each label is uniquely identifiable as

having originated from a particular principal or a group of principals from Pg. That

means there is a mapping originated : L → 2Pg that takes a label and returns the

principal that created the label or the group of principals from which the label could

have originated. For example, if we have a group of principals httpd, telnetd,

ftpd, sshd, which are responsible for communicating with principals from other

systems and they generate labels identifying those systems, then any label found

within the system that is an identifier of a foreign system must have been generated

by one of those four principals.

66

We shall now define what we consider information exchange between principals.

Intuitively, two principals exchange information at or after a given time when data

flows from one to the other. If intermediates such as other principals or objects

have been used to exchange the information, then information is exchanged between

the source and the intermediaries as well as the intermediaries and the target. The

successful opening of channels constitutes a 1 bit information exchange. In case

of checking the existence of an object for the purpose of information exchange is

only relevant for the creator of the object and the principal who tests the existence.

Principals who may have written to the object in the meantime do not matter as

they played no role in the existence of the object. Writing data into a channel is only

relevant if that very data is also read. That means that if data is already present

in the channel prior to a write operation w, that data needs to be read from the

channel before a reading principal is affected by w.

Because of our conservative approach when tracking information flow, we can

not be sure that information was actually exchanged between principals. However,

information could have been exchanged. Therefore, we shall formally define a po-

tential information exchange path IEn(p1, p2) between two principals p1, p2 ∈ P as a

sequence of n ≥ 1 operations from our model

op1(p1, s1) ◦ op2(s1, s2) ◦ . . . ◦ opn(sn, p2)

where the si ∈ {P ∪O} are the subjects for the operations. If the operation is a

read or write operation between principals, then, of course, we have opi(si, si+1, q).

This means that, if we see an operation op(x, y) as having a “direction” from source

x to target y, the source of each operation is the target of the next one. For the

open operation between principals we also allow the swapping of the parameters: i.e.

the sequence ... ◦ opk(sk, sk+1) ◦ open(sk+2, sk+1) ◦ ... still results in a valid potential

information exchange path.

Furthermore, we consider the destroy operation as the sequence of close opera-

tions that are triggered by it. Let subIEn(p1, p2, k) be the subsequence of IEn(p1, p2)

consisting of the first k ≤ n operations.

67

Some operations may only be in the path if they are matched with other opera-

tions in a manner so that information is propagated from one subject to the next. A

write operation needs to be matched with sufficient read operations, an open oper-

ation of a channel between principals is only relevant for the information exchange

if the opening principal was created by an operation in the path, and an open oper-

ation of a channel involving an object is only relevant if the object was created by

an operation in the path. In general these operations may exist by themselves, but

without their matching operations will not contribute to the information exchange

and therefore need not be in the path. We will elaborate on the individual match-ups

in the following:

If write(x, y, wi) ∈ subIEn(p1, p2, k), then we further require that there exists a

non-empty sequence of m read operations read(x, y, rj) ∈ subIEn(p1, p2, k
′), 0 < j ≤

m, where k′ > k and
∑m

j=1 rj > ci. The number ci is the number of items already

contained in the channel 〈x, y〉 prior to write(x, y, wi). We require this so that at

least some of the data written to the channel by the write operation is actually read

from the channel by the read() operations contained in the path, and at least the

last read() operation occurring after the write().

Similarly, if read(x, y, ri) ∈ subIEn(p1, p2, k), then we require that the operation

write(x, y, wj) ∈ subIEn(p1, p2, k
′) and furthermore that there is a sequence of read()

operations read(x, y, rq) ∈ subIEn(p1, p2, k
′′), where k′ < k′′ < k and

∑
rq +wi > cj.

This means that at least some data read from the channel by the read() operation

has to have been written to the channel by some prior read() operations contained

in the path.

In summary, if either a read or a write operation is contained in the information

exchange path, the sequence of operations must contain the following, where channel

〈x, y〉 contains c items,
∑m

i=1 ri > c, and m > 0:

. . . ◦write(x, y, w) ◦ . . . ◦ read(x, y, r1) ◦ . . . ◦ read(x, y, r2) ◦ . . . ◦ read(x, y, rm) ◦ . . .

If open(x, o) or open(o, x) ∈ subIEn(p1, p2, k) and o ∈ O, then we require that

create(y, o) ∈ subIEn(p1, p2, k
′), where k′ < k. Even though an open operation is

68

necessary for subsequent read operations the opening of a reading channel to an

object is only relevant for information exchange when the object was created by an

operation in the path. Otherwise, the open operation must not be contained in the

path. This means that the object must have been created by an operation in the

information exchange path prior to the open operation.

We say p1 and p2 potentially exchange information iff there exists a potential

information exchange path between p1 and p2.

Given the definitions above, the general information flow model has the following

two properties:

1. If information is exchanged between principals p1 ∈ Pg and p2 /∈ Pg, and label

l ∈ label(p1) prior to the information exchange, then l ∈ label(p2) after the

information exchange.

2. If principal p2 /∈ Pg and label l ∈ label(p2), then information was potentially

exchanged between p2 and a principal p1 ∈ originated(l).

We will prove the two properties using proof by induction

1. We need to show ∃IEn(p1, p2) ⇒ l ∈ label(p2). We do this by a proof of

induction over the length n > 0 of the information exchange path IEn(p1, p2)

of operations:

Base case: n = 1

A potential information exchange path IE1(p1, p2) only exists when there exists

any of the following operations:

create(p1, p2) We have l ∈ label(p1) and label(p2) = label(p1). It thus follows

that l ∈ label(p2).

open(p1, p2) and close(p1, p2) We have

l ∈ label(p1)andlabel(p2) = update(label(p1), label(p2))

By the nature of update() it follows that l ∈ label(p2).

69

Read and write operations are not part of the base case, as they must occur

as write(a, b, x)/read(b, c, y) pairs/groups.

Induction hypothesis: assume ∃IEk(p1, x) ⇒ l ∈ label(x) is true ∀1 ≤
k < n. Let opk+1 be the last operation in IEk+1(p1, p2), i.e., IEk+1(p1, p2) =

IEk(p1, x) ◦ opk+1. We have the following cases:

(a) If opk+1 is of the form create(x, p2), x ∈ P , then from the induction hy-

pothesis we know that l ∈ label(x). The create() operation copies the label

set of the creator to the created principal and we have label(p2) = label(x)

from which follows that l ∈ label(p2).

(b) If opk+1 is of the form open(x, p2), open(p2, x), close(x, p2), or close(p2, x),

x ∈ P , then we have l ∈ label(x) by the induction hypothesis. Further-

more, from opk+1 we have

label(x) = label(p2) = update(label(x), label(p2))

Because of the property of update it directly follows that l ∈ label(p2).

(c) If opk+1 is of the form read(y, p2, r), y ∈ P , then by definition ∃opi =

write(y, p2, w) ∈ subIEk+1(p1, p2, k
′), k′ < k + 1. This means that there

exists an information exchange path IEk′(p1, y) and by induction hypoth-

esis l ∈ label(y).

There is also possibly a sequence of read operations that read a total

number of r′ items from the channel 〈y, p2〉 after the write operation and

prior to opk+1. If r′ ≥ ci + w, then all the information from the write

operation has already been dequeued from the channel. This implies that

there exists a shorter information exchange path IEk′′(p1, p2), k′′ < k + 1

and from the induction hypothesis it directly follows that l ∈ label(p2).

Otherwise, we have r′ + r > w. As l ∈ label(y) prior to opi at least one

of the label sets queued in 〈y, p2〉 contains l. The operation read(y, p2, r)

leads to label(p2) = update(label(p2), dequeue(〈y, p2〉)) r times and thus

l ∈ label(p2).

70

(d) If opk+1 is of the form read(o, p2), o ∈ O, then by definition ∃write(x, o) ∈
subIEk+1(p1, p2, k

′), k′ < k + 1. This means that there exists an informa-

tion exchange path IEk′(p1, x) and by induction hypothesis l ∈ label(x).

The write operation results in label(o) = update(label(x), label(o)) and

thus l ∈ label(o). From the read operation we have

label(p2) = update(label(o), label(p2))

and it follows that l ∈ label(p2).

(e) If opk+1 is of the form open(o, p2), o ∈ O, then by definition ∃create(x, o) ∈
subIEk+1(p1, p2, k

′), k′ < k + 1. This means that there exists an informa-

tion exchange path IEk′(p1, x) and by induction hypothesis l ∈ label(x).

The create operation results in clabel(o) = label(x) and thus l ∈ clabel(o).

From the open operation we have label(p2) = update(clabel(o), label(p2))

and it follows that l ∈ label(p2).

�

2. We need to show l ∈ label(p2)⇒ ∃IEn′(p1, p2) ⊂ OPn, p1 ∈ originated(l), n′ >

0. We do this by a proof by induction over the sequence OPn of n ≥ n′ total

operations from our model from the start of the information exchange.

Base case: n = 1

A principal can obtain a label only through the addlabel(), open(), close(),

and read() operations. Because p2 /∈ Pg the addlabel() operation was not the

cause for l ∈ label(p2). Because n = 1, a read() operation also was not the

cause as it requires a previous write(). To obtain l with one single operation,

the operation had involve a principal p1 ∈ Pg. The label l was propagated

to p2 as a result of one of the assignments label(p2) = label(p1) (create) and

label(p2) = update(label(p1), label(p2)) (open, close between principals). A

write() operation does not directly affect a principal’s label set. Hence the label

must have been obtained via one of the following operations: create(p1, p2),

71

open(p1, p2), or close(p1, p2). Each of these operations is a valid information

exchange path IE1(p1, p2).

Induction hypothesis: assume l ∈ label(p2) ⇒ ∃IEn′(p1, p2) ⊂ OPk, p1 ∈
originated(l) is true ∀1 ≤ k < n

As p2 /∈ Pg, the label l must have been obtained by the latest operation

performed in the model and it must have involved p2. If l was obtained

through an earlier operation then there exists a shorter potential informa-

tion exchange path, and it directly follows from the induction hypothesis that

∃IEn′(p1, p2), p1 ∈ originated(l). We have the following cases:

(a) If the last operation opk+1 ∈ OPk+1 was one of create(x, p2), open(x, p2),

close(x, p2), or close(p2, x), and l was obtained by p2 as the result of

this operation, it follows that l ∈ label(x). By induction hypothesis

∃IEn′(p1, x) and we have IEn′+1(p1, p2) = IEn′(p1, x) ◦ opk+1.

(b) If opk+1 was of the form read(x, p2, r), and l was obtained by this oper-

ation, then l must have been part of one of the r number of label sets

contained in the channel queue. This means that there must have been

an operation opk′ = write(x, p2, w) ∈ OPk prior to opk+1, w > 0, and l ∈
label(x). Furthermore, the number of items c contained in 〈x, p2〉 prior to

opk′ plus w has to be greater than the number of items read from the chan-

nel from possible read operations in between opk′ and opk+1. If this is not

the case, l was propagated to p2 by some prior read operation already and

it directly follows from the induction hypothesis that ∃IEn′(p1, p2), where

p1 ∈ originated(l). Otherwise, by induction hypothesis ∃IEn′′(p1, x). The

existence of opk′ together with opk+1 fulfill the definition of an information

exchange path IEn′′+1(p1, p2) = IEn′′(p1, x) ◦ opk+1.

(c) If opk+1 was of the form read(o, p2), it implies that l ∈ label(o) and thus

there must have been an operation opk′ = write(x, o) ∈ OPk, at which

point we had l ∈ label(x). By induction hypothesis we have ∃IEn′(p1, x),

72

where p1 ∈ originated(l) and it directly follows that IEn′(p1, x)◦ ...◦opk′ ◦
... ◦ opk+1 = IEn′′(p1, p2).

(d) If opk+1 was of the form open(o, p2), it implies that l ∈ clabel(o). This

means that there must have been an operation opk′ = create(x, o) ∈ OPk,
at which point we had l ∈ label(x). By induction hypothesis ∃IEn′(p1, x),

where p1 ∈ originated(l) and it directly follows that IEn′(p1, x)◦ ...◦opk′ ◦
... ◦ opk+1 = IEn′′(p1, p2).

�

Note that if a space management mechanism is in place and it is of the loose type

as discussed above, then labels are potentially dropped. This means that the first

property of the model may no longer hold. The second property (if a label is present

information must have been exchanged), however, always holds. For strict models,

both properties hold.

Also note that a direct consequence of the model’s properties it follows that

l /∈ label(p2)⇔6 ∃IEn(p1, p2); ∀n, p1 ∈ Pg
i.e. if no label is present at a principal p2, then no communication has taken place

between principal p2 and a principal from Pg.

4.5 Case Studies

In the following we present several case studies to demonstrate how to use the

general model to create a sub-model to achieve desired accumulation of information.

Most of these case studies are based on a single host computing environment because

this was the main motivation for the development of the model.

4.5.1 User Influence Labels

To accomplish user influence tracking as described in Section 3.2.1 using label

propagation, we implement our model as follows. The system processes on the sys-

73

tem are our principals as they are the active subjects that initiate communication

exchanges. Passive objects are all system resources that are shared between pro-

cesses. This includes files, shared memory, devices, global variables, mutexes, and

locks. For each of those objects the system needs to manage the associated label

sets. For those objects that may be dynamically created by processes (files, shared

memory) the system also needs to keep track of their creator label (clabel) sets.

The creation of new processes is usually handled through system calls such as

fork under Unix. At this point an exact copy of the process is made but with a

new process id. The label set associated with the process may be copied for the new

process at this point as well.

Channels between principals are the types of communication exchange channels

between processes: sockets, pipes, and signals. For each of those channels the system

needs to keep track of the label sets associated with the data. As most operating

systems use data queues to store the elements in the channel that have not been read,

an implementation should not cause much overhead. The operations on channels in

a system closely resemble those of our model and the implementation should be

straightforward. For channels that do not require an explicit open, we may simply

drop the requirement that an open channel must exist for the read/write operations.

Channels between a principal and an object are abstract in this case and it is

sufficient to compute the label sets of the subjects involved at each operation.

The label set for user influence consists of all the user identifiers on the system.

On many systems this number is typically limited by the size of the user id field –

16 bits for Unix-like operating systems. Furthermore, there is often an upper limit

set on the number of possible users that is directly compiled into the kernel. Thus

we have a limited number of elements in the set, that, in many cases, is not large.

Because we want to track all possible influence any user might have exerted, the

label updating function update needs to preserve all labels and combine the label

sets of interacting subjects. We therefore choose update = ∪.

74

Finally, the binding of a user label to a process running on the system should

occur after some sort of user authentication. On many systems there are system

calls that change the user context of a process to that of a specified user (setuid on

Linux, for example). These system calls are therefore a natural choice to perform

our addlabel operation. Depending on the system, some modifications may have

to be performed to ensure that only the process resulting from the login carries the

user label but not the system process that manages the login processes for everyone.

For example, under Linux, there are several processes running the getty program

for users to log onto the terminal. It must be ensured that the adding of the label

occurs after the forking of the process. Otherwise, the process running getty will

accumulate all user labels of subsequent logins and pass those on to to its child

processes.

As a result of the likely low number of users on the system space for labels should

not be a problem. The upper limit for the label space per subject is the product of

the size of the user id field and the maximum number of users allowed. Therefore,

on many systems the space management discussed above will not be necessary.

4.5.2 Host Causality Labels

For host causality, we have an environment similar to that of user influence.

We have the same set of principals, objects, and channels, and the propagation

techniques are the same as well.

Also, we want to keep track of all network labels related to the processes in the

same manner as we wanted to keep track of the user label from the previous scenario.

Thus we also set update = ∪ in this case.

For the label set we need to choose labels that uniquely identify the network

connection. For TCP/IP this could be the tuple consisting of local port as well as

foreign port and IP address. Note that this label set is quite large (264 possible labels

for IPv4).

75

The adding of a label to a process should occur whenever the process receives

data from a network connection. For TCP the reception of data is initiated by the

three-way handshake and from a process’ perspective whenever the listening process

accepts a connection. Thus system calls such as accept under Linux can be used to

perform the addlabel operation. Under UDP there is no concept of a connection

and data is read by the listening process directly via system calls such as recvfrom.

This binding of labels is identical to the setting of process origin in our previous

work [11].

Because the label set is large, it is infeasible to allocate sufficient space for all

labels per subject. Therefore, one of the space management techniques discussed

earlier is recommended. It is desired by the nature of the information we seek that

no labels be lost. Because of this, a strict model as defined above is required. It is

part of future research to determine what a good balance between how much space to

make available and disturbing a system’s normal course of operation by disallowing

operations should be.

With host causality labels it is now possible to correlate incoming and outgoing

network traffic on the host. In particular, this may aid in the stepping stone detection

network traceback research discussed in Section 2.3.2 and a host supporting host

causality labels may be considered as an internal sensor as defined by Daniels [24].

4.5.3 Network Location Traceback Labels

We can extend the above host causality scenario to a complete network traceback

environment. Principals now are all processes on all systems in the environment, and

the object are all the system resources on all systems. Obviously, objects may only

exchange information with principals on the same system. The label propagation

mechanism within each system is exactly the same as described in the first case

study. In addition to that labels need to be propagated when principals on different

systems communicate with each other. For this purpose, a mechanism needs to be

76

devised that safely may transport labels across a network. This is part of future

research and beyond the scope of this dissertation.

The label set should contain labels that uniquely identify the location of a subject

initiating a cross-system communication. This could be a network address, such as

the IP address of the system, or things such as GPS coordinates or GUIDs. We

expect the label set to be quite large for the general case. Special cases may exist

where there is a small maximum label set size, such as network traceback within

intra-networks that contain only a small number of hosts.

The actual binding of the label via the addlabel operation is not as clear as in

the above examples, though. The binding could occur automatically for data leaving

a system. E.g. the network stack code of the system could add a label for the current

system if it is not already present. Alternatively, the label could be bound when a

user logs in locally to a system as described in the first case study. Yet another way

to perform the binding would be an ISP who adds a label to incoming traffic on

the border routers. If the ISP’s infrastructure fully supports the label propagation,

then traffic leaving the ISP’s network through a border gateway may be correlated

to traffic entering it.

It is obvious that the modifications and requirements of this implementation are

restrictive and will find its use only in controlled environments where complete net-

work traceback is desired and its benefit outweighs the restrictions. This case study

is similar to the approach taken by Zhang and Dasgupta [119] (see Section 2.3.1) with

the added benefit that hosts being used as stepping stones within an autonomous

system are now also addressed.

4.5.4 Military Classification Labels

In many environments where confidentiality is a concern, the disclosure or com-

promise of some information may result in greater loss than disclosure of less sensitive

information. Thus, to help provide graduated protection, it is helpful to partition in-

77

formation into categories based on potential loss. The military model of classification

is one such partitioning [79].

In the US military model of classification, information is divided into unclassi-

fied (minimal or no loss if disclosed), FOUO (for official use only; unclassified, but

restricted release), confidential (disclosure may cause some loss), secret (significant

damage if disclosed), and top secret (grave damage if disclosed).

Persons (and equipment) that are to have access to information in this system

are required to be cleared to the highest level of access needed to accomplish their

tasks. It should be noted that simply because someone has a clearance at a particular

level does not mean that he/she can access all information that is classified at that

level. Instead, there needs to be a ”need to know” the information as a further

condition of disclosure. There may also be additional restrictions that are imposed

by the stewards of particular data, such as it cannot be shared with allies (even if

they have the right level of clearance), or the existence of the data itself must be

denied. It may also be the case that information from two different sources should

never be combined in one place because the combination might lead to inference of

something sensitive not otherwise knowable from the individual parts. These classes

of information are given labels such as Umbra or Majic. Often, these labels are

themselves classified, and an unclassified abbreviation is used, such as MJ or GG.

To access data in one of these categories or compartments, an individual must be

”read in” to the special conditions of access to that category.

The combination of levels and categories forms a matrix to determine access

control. To read a piece of information, a person must be cleared to at least the

level of that information (secret or top secret), AND someone in charge of that

information must agree that the person has a need to know the information, AND

the person must be read into all of the categories that label the information. So,

for example, if a datum is Secret and in compartments A, B and X, a person with

Top Secret clearance would still not be granted access if she only had been granted

access to B and X.

78

Information that is composed of other information or processes inherits all the

categories of the component parts, and it takes on the highest level of classification

of any of the component parts. For example, combining item 1 at Secret MJ, item

2 at Top Secret AA, and item 3 at Secret XQ would result in a new item at level

Top Secret with labels MJ, AA, and XQ. Note that there might be special rules

associated with MJ, AA or XQ that would restrict (or prohibit) this combination.

We can use our model to keep track of information flow violations (or, in com-

bination with access control measures, prevent them), while automatically updating

the classification information of documents as they are modified. In this case, our

labels represent the most restrictive set of levels and categories that were actively

accessed by a principal during one “session.” A session is the duration in which a

principal is active within the system (e.g. the period of time during which a user

is logged in to a computing system). Note that the label set does not denote the

principal’s actual clearance credentials.

For reasons of simplicity, let’s assume we have three classification levels: unclas-

sified (u), secret (s), and top secret (t), and four categories: A, B, C, and D. The

label set consists of the cross product between the levels and the possible subsets of

the categories (i.e. {u, s, t}×2{A,B,C,D}). Furthermore, there is an ordering u < s < t

of the levels. We define our label-updating function as max for the level-part and as

∪ for the category part.

At the start of a session a principal’s label set is empty. Only through access to

classified documents and communication with principals that already have acquired

labels does a principal acquire labels itself. This ensures that a principal may still

communicate with other principals of lower or different classification prior to the

access of higher classified documents, but not thereafter. An access violation has

occurred when a principal holds a label with a higher level or different categories

than its actual clearance.

The actual implementation may be a computing system as described in the first

case study. The label propagation is analogous. The documents in this case are the

79

objects on the system. When two principals communicate with each other, their

label sets will be modified according to the update function. This guarantees that

any documents that are created are always classified with the highest security levels

necessary and the classification of objects that are modified is also properly updated.

80

5 IMPLEMENTATION

In the following we discuss the implementation of our model as a proof-of-concept

study. The model was implemented by modifying the FreeBSD 4.12 operating system

[40]. The implementation is kernel-based, which means that the propagation method

lies in a protected space that cannot be tampered with from user mode programs.

If the kernel can be trusted, then so can the label propagation and any information

gained by it. Implementing the model for a real production operating system as

opposed to a simulated one serves multiple purposes:

• We demonstrate that utilizing the model is feasible for modern operating sys-

tems.

• We can accurately measure the computational overhead needed for label prop-

agation to work.

• We encounter and can address the difficulties and limitations that come with

such an implementation.

• Results obtained from this proof-of-concept implementation may be applied to

other operating systems with similar architectures.

Section 5.1 describes which subsystems would need to be addressed for a full

implementation of the model we described. Given that our implementation is merely

a proof-of-concept, we focus on the major subsystems needed for label propagation

to function. It addresses all the important aspects that need to be considered,

and most of the other subsystems can be implemented in a similar fashion. In the

subsequent sections we describe the parts that were actually implemented, namely:

the data structures and operations introduced to the kernel (Section 5.2), how to

81

modify network sockets as part of interprocess communication (Section 5.3), and

how to handle label propagation for files (Section 5.4).

5.1 Subsystems Affected by Label Propagation

Applying our model for a computing system means that we need to translate the

sets of principals, objects, and channels to entities of the system. Furthermore, the

operations of the model need to be implemented accordingly. The acting principals

on a computing system are its processes. Therefore, the set P maps to the set of

processes on the system. This is consistent with the notion that on all computing

systems, there is one initial process (such as init in the UNIX world), from which

subsequently all other processes on the system are created (unless it is not a multi-

process system, in which case there is only one initial process). The set of objects

O of the model are all the resources that are shared on the system among processes.

Those resources that belong solely to one given process need not be considered.

Furthermore, the set of possible channels is comprised of the system’s provisions

for interprocess communication, as well as the means to access, modify, and create

shared resources. To implement label propagation for an entire operating system,

essentially three parts need to be completed:

1. The system needs to be aware of labels and be able to bind them to its prin-

cipals.

2. All interprocess communication needs to be covered by the label propagation

mechanism.

3. All objects shared among processes need to be associated with labels for the

duration of the sharing and those labels updated according to the model.

82

5.1.1 Shared Resources

The resources that are shared among processes on a system are numerous. In

FreeBSD and other UNIX-type operating systems they consist of at least the follow-

ing [99]:

• Files. Files are data objects typically stored on secondary storage. Files are

generally shared between numerous processes. While there may be a limitation

to only those processes that possess the proper access credentials to perform

operations on a file, those credentials are on a user/group basis and not on

an individual process basis. Furthermore, the access credentials are subject

to change arbitrarily, which means that labels need to be kept for files even if

only one process has access to a file at a given time. Files are considered to be

permanent objects on a computing system.

• Mutexes and Condition Variables. Mutexes are used for synchronization on a

system. They are shared between entities within the same name space as the

mutex. A free mutex may be locked by one entity at which point all other

entities trying to obtain the lock have to wait until the mutex is unlocked.

Condition Variables are used in conjunction with mutexes to signal any waiting

entities that some event (usually a change in a variable) has occurred. Mutexes

typically only occur within a given process, but it may be possible to share a

dynamically allocated mutex among processes through shared memory.

• Read-write and Record Locks. Unlike mutexes, read-write locks do not block

access to an entire “critical region” protected by the lock. Read-write locks

differentiate between read and write mode: any number of processes may hold

a read mode lock as long as no process holds a write mode lock, and a write

mode lock can only be obtained when no other process holds any mode lock.

Record locks further govern read and write access to specific regions of a file.

They work like read-write locks, but one can specify if the entire file is locked

83

or merely a specific byte-region. As with mutexes, read-write locks are usually

shared only by threads within a process. Record locks, however, are shared

between processes.

• Semaphores. Semaphores are explicitly used for synchronization between pro-

cesses. As with mutexes, semaphores can be locked (set to 1) and waited for

(wait for value to be 0), but the value of a semaphore may also be read without

blocking. Essentially, a semaphore is a 1-bit global variable shared among all

processes. Some semaphores (such as System V semaphores [99]) also allow

counting semaphores, whose values range between zero and some specified up-

per limit. Semaphores are temporary objects that exist in the system until

they are destroyed.

• Shared Memory. Shared memory is heap memory that is mapped to the address

space of multiple processes. Once the system has mapped the address space,

only the processes that have access to the shared memory are involved in

passing data to and from the memory space. A special case of shared memory

is the memory-mapping of a file. In this case the file data is mapped into

memory and the process(es) can directly modify the memory, affecting the file

contents as well. When synchronizing the memory space with the file, the

system is again involved.

• Sockets and Message Queues. Certain parameters can be set and retrieved for

sockets and message queues as options. Thus, they qualify as shared resources

through which data may be exchanged as well. We discuss sockets and message

queues as part of interprocess communication in further detail below.

The implementation we describe in the following sections handles label propaga-

tion for a fixed number of globally shared labels. That means that there is an upper

bound on the number of labels, which allows us to allocate sufficient space for the

processes and objects or fail during their creation. Furthermore, the update function

84

will always succeed and we do not have to worry about the measures to take when

there is insufficient space for labels as a result of the update (see Section 4.3.1).

As there is no system involvement when shared memory is processed, there is no

elegant solution to keep track of label propagation. One might imagine monitoring

all the system calls that involve copying of data between buffers and determine if

any of the addresses involved fall into a shared memory region. However, because

data may directly be assigned in chunks of up to a word length, this will not cover all

of the information flow between processes. Barring the utilization of static analysis

techniques as discussed in Section 2.2.2, a monitoring device such as Fenton’s Mem-

ory Mark machine [37], or the utilization of virtual machines or special hardware, the

only reliable method to properly implement the model is once again conservative: all

processes that share memory between them need to be treated as a single principal

during the duration of the sharing. For an implementation of this, for every opera-

tion that involves a principal, further lookups will have to be made to see if it belongs

to such a group and then perform the operation for all processes involved. The uti-

lization of shared memory is a feature not common to many programs. Thus, the

inclusion of such a mechanism lies well outside of a proof-of-concept implementation,

and we will not consider shared memory any further (and as a direct consequence

we also will not have to consider mutexes, condition variables, and read-write locks).

5.1.2 Interprocess Communication

Interprocess communication mechanisms allow two processes on a system to ex-

change data. In UNIX-like operating systems there are the following mechanisms

available [65, 99]:

• Pipes and FIFOs. A pipe is the original UNIX mechanism for interprocess

communication. A uni-directional pipe consists of two file descriptors, one for

writing and one for reading. Bi-directional pipes consist of two uni-directional

pipes. Pipes have no name associated with them, and can only establish com-

85

munication between related processes (parent and child). This was changed

with FIFOs (also called named pipes).

• Sockets. Sockets are the systems interface for sending and receiving data over

a network. With facilities such as the loopback device and socket types for local

data transfer (UNIX domain protocols), sockets can also be used for processes

to communicate with each other.

• Message Queues. Message queues are used to deliver message records, which

may contain arbitrary data, between processes. Unlike pipes and sockets, mes-

sage queues need not be open between two processes. A process may write

data to a message queue and then terminate, and a second process can retrieve

the message record even after the termination of the writing process.

• Remote Procedure Calls. Remote procedure calls occur when a process invokes

a procedure that is not located in its own environment but rather within a

different process on the same host (doors) or on a different host (Sun RPC).

Within a process the doors are identified by descriptors and externally by

pathnames in the file system. Doors are not supported in FreeBSD and the

Sun RPC calls utilize the socket mechanism to transport data.

• Signals. Signals are software interrupts that allow a process to react to asyn-

chronous events. Apart from handling signals that originate from certain ex-

ternal events (such as a user aborting a program), processes can send signals

to other processes and thus count as interprocess communication [97].

5.1.3 Operations and System Calls

In FreeBSD and many other operating systems the way a process is able to

communicate with other processes or access system resources is governed through

the use of system calls. System calls are the interface from user space processes and

the operating system kernel. The shared objects are created and manipulated that

86

way and all the interprocess communication mechanisms utilize system calls. In the

following we describe which FreeBSD system calls are relevant for the operations of

our model.

Create

The only way to create a new process apart from init and the page daemon is

through the fork system call [97]. The function is called once, but returns twice:

once to the calling process (parent) returning the process id of the child process, and

once to the newly created process (child) returning a value of 0. While there are the

system calls system and popen, which also create new processes in the system, they

do so by invoking fork and then one of the calls from the exec-family. Thus it is

sufficient to address the inheritance of label sets at the fork system call.

There is a large number of system calls available to create shared objects. Files

can be created with the open, creat, and mknod system calls. Record locks are

created by invoking the fcntl system call on an open file descriptor with a com-

mand indicating the setting of the lock and a struct flock with types F RDLCK or

F WRLOCK as parameters. Semaphores can either be named, in which case they are

created with sem open and semget, or they can be memory-based, in which case they

are created with sem init. However, the former case also requires shared memory

between processes. In all of the above cases, the system must make sure that the

newly created object’s creator label set must be set to the label set of the process

that initiated the system call.

Open

Pipes are created with the pipe system call. The call returns the two file descrip-

tors to the process. After that the process usually calls fork and the parent and child

process each will close one of the descriptors. Alternatively, the popen call combines

these steps and further executes a command for the child process. The updating of

87

the label sets is already taken care of through the call to fork. A socket is created

with the socket system call, but the communication channel is not open at this

time. The socketpair system call, similar to pipe creates two connected sockets,

one of which is usually passed to a child process through fork or through another

communication channel supported by the system. This only applies to sockets of the

Unix domain protocol suite. Because sockets are considered shared resources in the

system, at the point of the creation the label set of the calling process has to be asso-

ciated with the socket. With the creation of the socket, the communication channel

is not opened, however. This is done through a series of system calls on both client

and server side (bind, listen, connect, accept) for stream sockets. For datagram

sockets no explicit opening of a channel is performed. Data is exchanged on a per

packet basis through the read and write operations. Upon a successful opening of a

stream socket the label sets of the processes involved need to be updated with each

other (if both endpoints are local).

Message queues are not explicitly opened as they do not require two endpoints

for communication. A message queue needs to be explicitly created, however. This

is done with the msgget system call. In the case when the system call is used to

create the queue (it is also used to read data from it), the label set of the creating

process should be associated with the queue, as the queue also qualifies as a shared

resource whose existence may be used to exchange information. Signals are passed

on by the system instantaneously, without an explicit opening of a channel.

Opening a channel from a process to a shared object may not always occur.

Obtaining the status of a lock or reading the value of a semaphore does not require

an explicit setup of a channel. Thus the only explicit opening of a channel regarding

the shared objects occurs for files. Here, the channels are opened via the open system

call. Depending on the flags that are passed to the system call, the channel is either

read-only, write-only, or bi-directional. In all the cases, the label set of the process

that invoked the open call needs to be updated with that of file’s creator label set.

88

Write

Writing data to a channel is different from storing data in an object. This is

because the data may not immediately reach its destination, but rather is stored in

the channel until it is read by the reading process. For this purpose, the channel

endpoints (descriptors) usually have send and receive buffers, where the data of the

writing process is put into the send buffer, and data is moved from the receive buffer

to the reading process. In some cases send and receive buffer are the same, and in

other cases there is some transport mechanism between the buffers. Labels need to

be associated with each new data instance (packet) that enters the send buffer. Thus,

if a packet of size n is written to the channel, the label set of the writing process

needs to be associated with that packet, and this is equivalent to the n number of

enqueue operations of our model (see Section 4.2). Figure 5.1 illustrates the way

data is propagated through channels.

LS LS LS LS LS LS

Descriptor Descriptor

send buffer receive buffer

writing process reading process

LS = Label Set

transport

Figure 5.1. Data flowing through a channel

Pipes use the write and writev system calls to write data into the channel.

Writing data to a socket is performed by one of the following system calls, depending

on the socket type: write, writev, send1, sendto, and sendmsg. For all the pipe

1send is not actually a system call but rather a library function that utilizes sendto. However it
is listed as a system call in the FreeBSD manual pages.

89

and socket write calls the data that is sent to the send buffer needs to be tagged

with the label set of the calling process. Furthermore, for sockets the fcntl, ioctl,

and setsockopt system calls can be used to modify parameters of the socket that

the corresponding reading process may interpret. Thus, for those calls, the label set

associated with the socket needs to be updated with that of the calling process.

For message queues the send and receive buffers are identical and implemented

as a priority queue. Furthermore, there are no specific descriptors that each process

possesses but rather global endpoints open to all processes. Writing data to a message

queue is performed via the msgsnd system call. At this point, the label set of the

calling process needs to be associated with the message packet that is put into the

queue. Certain parameters of the queue may also be set with the msgctl call. In

this case the label set associated with the message queue itself, rather than those

associated with the messages, needs to be updated with the calling process’s label

set. Signals are sent via the kill system call. They are delivered immediately and

there is no explicit “reading” of the signal. A process is either able to handle the

signal, or the signal is ignored. Thus for the kill system call the label set of the

process receiving the signal needs to be updated with the label set of the calling

process.

Writing data to a record lock is equivalent to creating it or performing the unlock

procedure. The latter is also done via the fcntl system call, one of the F SETLK

commands and the F UNLCK type. Semaphores, with their system wide accessibility,

can be manipulated by other processes once they are created. The value of a non-

counting semaphore is changed to 1 (locked) with the sem wait and sem trywait sys-

tem calls, and set to 0 (unlocked) with the sem post call. For counting semaphores,

the value of the semaphore is manipulated with the semget, semop, and semctl sys-

tem calls. Data is written to file objects when either their data is modified or when

the metadata of the file changes. The system calls associated with altering files are

write, writev, pwrite, open (with the O TRUNC flag set), fcntl, ioctl, truncate,

ftruncate, chmod, fchmod, lchmod, chflags, fchflags, chown, fchown, lchown,

90

utimes, lutimes, futimes, rename, and link, symlink, and mkdir for directories.

In all these cases, the label set associated with the object needs to be updated with

the label set of the calling process.

Read

As described in the previous section, reading data from a channel usually involves

reading data from the receive buffer of the reading process’s channel descriptor. Pipes

use the read and readv system calls to read the data. Data is read from a socket

through the read, readv, recv2, recvfrom, and recvmsg system calls. For the read

calls for pipes and sockets, the label sets of the packets that are read from the receive

buffer must be used to update the label set of the process invoking the read. For

sockets, the fcntl, ioctl, and getsockopt calls can be used to retrieve parameters

from the socket. In this case the calling process’s label set needs to be updated with

the label set associated with the socket itself. Reading messages from a message

queue is done with the msgget and msgrcv calls. Certain parameters of the queue

may also be accessed through the msgctl system call. In the former case the label set

associated with the message(s) is used to update the calling process’s label set, in the

latter case the label set associated with the queue itself must be used. For signals,

there is no explicit read mechanism. Instead, the program the process executes must

be coded to handle signals (see section above).

Reading data from a record lock is equivalent to trying to obtain a lock. This

is done via the fcntl system call on an open file descriptor but this time with an

F GETLK command. The value of a non-counting semaphore can be obtained via

the sem trywait call (implicitly) or via the sem getvalue system call. The value

of counting semaphores is read with the semget, semop, and semctl system calls.

Data that can be read from files is either the file data itself, or the metadata of the

file. The system calls associated with reading data from a file are: read, readv,

2recv is not actually a system call but rather a library function that utilizes recvfrom. However
it is listed as a system call in the FreeBSD manual pages.

91

pread, stat, lstat, fstat, poll, access, chdir, and fchdir, as well as readlink

for directories.

Close and Destroy

When a channel is destroyed, all the unsent and/or unread data in the send and

receive buffer is discarded and will not have any effect on label updating. Pipes are

closed with the pclose system call. Sockets can be closed with the shutdown and

close system calls. If shutdown is used, the socket merely shuts down communica-

tions in one or both directions, but the socket can be reconnected and parameters

still be set and read. In this case the label set of the socket needs to be updated with

the label set of the calling process. If close is used and the socket is connection-

oriented (streaming), then the two label sets of the processes involved need to be

updated with each other if both endpoints are local. Message queues are destroyed

via the msgctl system call and the IPC RMID command. When a message queue is

destroyed, the label sets of any remaining processes that block for a read access need

to be updated with the label set of the calling process and vice versa. Signals do not

possess a close or destroy mechanism.

When closing an open channel to a file or removing a lock, according to our

model, no label sets need to be modified. Therefore none of the respective system

calls need to be modified. The same is true when destroying the object.

A process is destroyed in two ways: it either ends the program it is running and

returns, or it receives a SIGKILL signal. The existing open communication channels

the process possesses are closed by the system and thus no label sets need to be

updated. As with closing a channel to a shared object, destroying a shared object

has no effect on any label sets.

The number of system calls we have listed above that need to be modified to

allow full label propagation according to the model we presented in Section 4.2

is extensive. Some of the implementation work may be reduced as some system

92

calls share lower level functions in the kernel, where the appropriate modifications

may be performed (see the following sections). However, most of the complexity

arises from the need to address communication through storage channels. In the

general case processes will not abuse mechanisms such as the existence of files, locks,

semaphores, or message queues, changes in socket parameters, or changes in file

metadata to exchange information. With the introduction of observation techniques

such as the ones we discuss in this document, this may change, however. If all

legitimate channels on a system are effectively monitored then malicious users will

find ways to circumvent those channels. However, addressing those storage channels

in a proof-of-concept implementation is well beyond the scope of the work we present

here. Therefore, for the proof-of-concept implementation we will pick the most

relevant subsystems and focus only on implementing label propagation for the data

channels on the system. That means that we will ignore the open and close operations

of our model, and do not keep track of creator label sets. The techniques we describe

in the following should apply for most of those instances, and many of the system

calls we do not address can be modified in the same manner as we describe below.

In addition to the modification of the systems calls, we also need to be able to map

certain information with respect to labels. Not all of the mappings are necessary, but

they may improve performance of certain operations regarding labels. The mappings

are:

• process id → label set

• object identifier → label set

• label × label set → boolean

• label → 2{processes×objects}

• object identifier × label → boolean

• process id × label → boolean

93

The last three mappings are not required for label propagation to work. Actually,

the last two are merely combinations of the first three. However, they may allow

testing in a more efficient manner whether a given label is part of a process’s or

object’s label set and also obtaining all the processes and objects whose label sets

contain a specific label.

5.2 Data Structures and Operations

The main data structure that manages the labels in the kernel is a global table

label table, which is an array that contains the label data as well as its position

within the table.

struct label {

char data[LABEL_SIZE]; // actual label data

long pos; // position in the global array

};

extern struct label *label_table[LABEL_SET_MAX];

This allows the referencing of a label to be its entry number within the label

table. Thus, any given label set associated with a process or object can be as simple

as a bit-vector, where each bit signifies whether the label at that position is contained

in the set or not. That means that any given label set is a bit vector with as many

bits as there are possible labels:

typedef struct _labelSet {char v[LABEL_VECTOR];} labelSet;

The constants have the following relationship (there a 8 bits in a byte):

#define LABEL_VECTOR (LABEL_SET_MAX / 8)

The relationship between label sets and the global label table are shown in Fig-

ure 5.2. Note that the actual content of the label is not important for the propagation

at all. The operations described in the following will mostly involve only label sets.

94

It is conceivable to have a further mapping that, given a label, finds the position in

the table. This may be useful to determine if a potentially new label to the system

is already contained in the label table (and thus is not new). This may be achieved,

for example, with a binary search tree using the label data as a key that maps back

to the position in the global table. The global table will still be necessary, because

once a position has been assigned to a label it must be permanent or the label sets

will carry incorrect information. Plus, we achieve a O(1) lookup for a given position

in the table as opposed to the O(logn) such an operation would take if only a search

tree were realized.

11 10 0

1

2

0

Label Vector

Global Table of size M

Pos Data

...

.

.

.

M−1

M

Figure 5.2. The main kernel data structure for labels

The create label operation takes as arguments a buffer containing the label

data and the length of the buffer. If the label is already contained in the label table,

a pointer to that label is returned. Otherwise a new label is created in a free slot in

95

the table and a pointer to the label is returned. If no free slot is available, then a

null pointer is returned.

Note that the system is not aware of any specific meaning of a label (i.e. user

identity or location information). The system’s purpose is merely to propagate the

labels according to the operations of the model. Any interpretation of the labels

is done by other extensions of the system (i.e., access control mechanisms, logging

facilities, etc.), which are outside the scope of this work.

The add label operation takes as arguments a label and a label set and sets the

appropriate bit in the bit vector to true.

The update labels operation takes as arguments two label sets: a source and

a target. It then assigns the target label set the bit-wise “OR” of the source and

target vectors.

To provide an interface to user space that allows user programs to query processes’

labels, two new system calls were introduced to the system. The getlabel call

retrieves the label set for a specified process id and stores it into the supplied buffer.

The getlabeldata call retrieves the label data for the specified entry in the global

label table and stores it in the supplied buffer. It is thus the responsibility of the

user space program to compute the position in the label table from the bit vector

and then retrieve the data.

For debugging purposes we also implemented another system call, addlabel,

which binds a new label to a specified process. This call would not be part of a

regular system.

Note that there are no operations removing labels from the system. That means

that the proof-of-concept implementation will only be useful to a limited degree for

label sets that are not fixed in size. This could be remedied by introducing a reference

count for each label and, once the reference count reaches zero, removing the label

from the table. However, this would imply that the update function no longer is a

simple “OR” operation. The update function now would need to determine which

labels were newly added to label sets as part of the update and increase the reference

96

count. Furthermore, whenever a process, shared resource, or label set residing in a

channel gets destroyed the reference count needs to be decreased.

With the removal of labels from the label table we also introduce the problem of

keeping track of the next free available slot in the table. However, this problem is

similar to that of determining the next free process number of a system and can be

solved in a similar manner.

With such a mechanism in place, however, the system could address unbounded

label sets to a limited degree depending on the overall size of the label table and

the retention of individual labels within the system. If a point is reached where no

more labels can be assigned (or some threshold is reached), an alert could be issued,

calling for resolution by a human being.

5.3 IPC: Sockets

From the different types of interprocess communication described in Section 5.1.2,

the socket subsystem is the most complex one. The FreeBSD implementation of

pipes utilizes supposedly the socket infrastructure to transmit data [65], but our

performance overhead results in Section 5.5.4 indicate otherwise. Furthermore, the

Sun RPC mechanism also uses sockets and the network subsystem to function. That

and the fact that message queues are commonly not used too often by programs led

us to implement label propagation for the socket subsystem.

As described in Section 5.1.3, sockets utilize send and receive buffers to store

pending packets until they are sent over the network or read by the receiving process.

The main data structure used to assemble those packets is the mbuf. Mbufs are used

to build packets. They are small building blocks that contain space for a small

amount of data and can be chained together to provide space for larger packets.

Because of their small size, it is not feasible to store a label set within an mbuf. An

mbuf only has 128 bytes of total space available. Furthermore, not every mbuf needs

to be associated with a label set. The start of each data packet is indicated with a

97

special mbuf that has a packet header, and it is sufficient to associate labels with

those mbufs. Thus we modify the struct pkthdr for the mbufs to contain a pointer

to a label set. This pointer is initialized to zero every time a new packet header mbuf

is allocated through the M GETHDR macro. When mbuf are released back to memory,

we also need to free the label set associated with it if it is of the type M PKTHDR and

actually contains a label set. This is done in the m free function. When mbufs are

copied with the m copym function a new copy of the label set needs to be generated

to avoid the same label set to be freed twice.

The system calls that we need to consider for an implementation are read, readv,

recv, recvfrom, recvmsg, write, writev, send, sendto, and sendmsg. However,

there are lower level functions that are invoked by those system calls, which, in turn,

all call the soreceive function for the reading calls and sosend for the writing calls.

Figure 5.3 illustrates the function hierarchy and the overall network stack structure

of FreeBSD.

98

readv

recvit

writev

sosend

sendit

sendto

IF IF

(TCP/UDP)

Transport
Layer

Layer
Network

(IP)

IF IF

recv

read recvmsgrecvfrom

soo_read

sendmsgwrite

send

soo_write

soreceive

(TCP/UDP)

Transport
Layer

Layer
Network

(IP)

send buffer receive buffer

outgoing
network
traffic

incoming
network
traffic

loopback interface

Figure 5.3. FreeBSD kernel functions for socket I/O

99

The sosend function is responsible for writing data into the send buffer and in-

voking the proper protocol’s handling function for the packet through the pr usrreq

function that is associated with the socket [65, 99]. Sosend allocates a new mbuf of

type M PKTHDR unless one was already passed down to the function. At this point

we check if the calling process has a label set associated with it. If so, we allocate

a new bit vector for the label set, copy the process’s label set to the new label set,

and set the pointer in the mbuf’s packet header (either the one allocated by sosend

or the one that was passed down) to the new label set. Once passed to the send

buffer where the appropriate protocol’s handling function fetches the packets via the

pr usrreq mechanism, the mbufs are passed down the network stack, and if the re-

ceiving endpoint is local, they will be passed through the loopback device and back

up the network stack (see Figure 5.3).

In some instances a protocol in the network stack has to append headers to the

packet. If there is not sufficient space at the top of the packet header mbuf for the

new header, then a new mbuf is prepended to the packet as its new header. This

is done via the M PREPEND macro and utilized for example in UDP. Thus the macro

was modified to switch the pointer to the label set to the new mbuf header. For

some unknown reason, TCP does not utilize the M PREPEND macro. It always uses

M GETHDR and manually prepends the new mbuf. Therefore, the tcp output function

was also modified to switch the pointer. This means that if support for other network

protocols is required, one needs to make sure that special cases like this are handled

properly.

The soreceive function reads data from the socket’s receive buffer, and blocks

if no sufficient data is available to fulfill the request from the higher level functions.

When the data is received from the socket receive buffer, soreceive copies the

data to the user space buffers that were supplied by the system calls. Right before

copying the data, both for out-of-band and regular data, the label set of the process

that invoked soreceive indirectly needs to be updated. However, the process id

of that process is not available to the function. Changing the function parameters

100

of soreceive would mean having to change the entire modular socket and vnode

generic operations for the “receive” type, because the soreceive function may be

invoked through a pointer that is supplied to map to generic function calls. We

therefore decided to “piggyback” the process id through an unused parameter in

the invocation of soreceive through soo read and recvit. Both those function

have access to the calling process’s id and both of them pass a null value to the

fourth argument of soreceive (an mbuf to which to transfer the receive buffer data

directly). Thus a new message flag was created, MSG LABELPID, which, when set,

tells soreceive to interpret this pointer as a pointer to a process table entry. Now

when data is about to be copied whose mbuf packet headers contain a pointer to

a label set, the label set of the process that invoked the reading from the socket is

updated with that label set, or a new label set is created for that process.

5.4 Shared Resources: Files

Looking at the amount of system calls that govern the use of files in Section 5.1.3,

one can see that files are by far the most complex among the shared resources in

FreeBSD. Furthermore, files are the only kind of shared object in the system that

are intended for data exchange (we do exclude shared memory from our analysis;

see Section 5.1.1). Thus our proof-of-concept implementation need to deal only with

files for label propagation.

FreeBSD, like many other UNIX-like operating systems, supports many different

file systems. To bring many different file systems with different layouts and operation

into one single framework transparent to the user space processes, FreeBSD utilizes

a virtual file system layer. This ensures that standard operations that the operating

system supplies can be properly mapped to the file system specific functions. The

generic operations that can be performed on a file descriptor by a process are mapped

in a structure struct fileops, which contain pointers to the appropriate low-level

101

operation for the underlying file system. This is done for read, write, ioctl, poll, stat,

and close operations.

There are two ways to implement label propagation regarding file systems: the

labels can be stored with each file, or the kernel itself keeps track of which file is

associated with what labels. The first approach has the advantage that there is

little computational overhead as there needs to be no explicit mapping of files to

labels. Simply by accessing the file, which is done anyway during the operations,

the label set may be retrieved. Plus, the labels for a file are automatically stored

permanently. However, this way each individual file system needs to be modified to

accommodate label propagation. This might not be possible for certain file systems.

While for some file systems, such as ext2 [16], there are unused fields (e.g., the access

control pointer), which can be used to point to blocks containing labels, there is

no such extra space in the Reiser file system [9], and future file systems might be

similarly frugal with the space they use. When the kernel keeps track of what the

labels for a file are, then there needs to be some sort of lookup data structure for

the mapping. However, by keeping the mapping in the kernel, the implementation is

independent of the underlying file systems, supporting any of those supported by the

operating system itself: Provided a unique identifier can be assigned to each file on

the system. Furthermore, a data structure that contains all the files that have label

sets associated with them allows us to efficiently answer questions such as: “Which

are the files that possess label X?”. If labels were stored directly with the file, then

all the files on the system would have to be examined, not only those that have a

label set.

Because of those advantages and the fact that an implementation affects fewer

subsystems of the kernel, we have decided to keep track of file label sets directly in

the kernel. For this, we have introduced a global file labels mapping that utilizes

an AVL tree [1], a version of a balanced binary search tree. This gives us O(logn)

lookup and insertion time, where n is the number of files with labels. Given a file

identifier, the get file entry function either returns the label vector associated

102

with the file, or null if the file has no labels. Plus, labels can be associated with a

file via the insert file label function, which takes the file identifier and a label

set as parameters and creates an entry in the search tree, copying the provided label

set.

Files in FreeBSD (and according to the POSIX standard [47]) are uniquely iden-

tified system-wide by the pair of device and inode numbers. This is because, inode

numbers are unique only within the disk partition where they reside. Both are

currently 32-bit values, so there is a hard upper limit of 64 comparisons for up to

264 total items when performing operations on the binary search tree. The actual

number can be expected to be much lower given that the number of disk devices

(partitions) can be expected to be at most a double-digit number, and the number

of files with labels to be considerably less than 232. In terms of storage requirements,

each entry of the AVL tree takes up 24 bytes plus the size of the label bit vector.

The system calls that are responsible for data transfer to an from files are read,

readv, write, writev. The read and readv system calls, both invoke fo read,

which invokes the proper low-level function for read (this is true not only for regular

files, but also for sockets and pipes). Therefore this is the place to handle the label

propagation. After a successful call to the low-level read function we check whether

the file descriptor is actually of type DTYPE VNODE. If this is the case we retrieve the

device and inode information from the vnode parameter that was passed to fo read.

If an entry for the device/inode pair exists in the file labels tree, then we update

the calling process’s label set with the one retrieved by the lookup.

Similar to the reading calls, the fo write function is called by the writing system

calls. After a successful low-level write operation and if the calling process has a label

set associated with it, we retrieve the device and inode numbers from the vnode. If a

lookup in the file labels tree yields a pointer to a label set, we update that label

set with that of the process. If no label set previously existed for the file, an entry

is created in the tree with a copy of the process’s label set.

103

We furthermore implemented a new system call, get filelabel, that, given the

device and inode number of a file, returns the success value of the operation into a

supplied variable and on success the label vector into a provided buffer. The device

and inode number of a file can be obtained via the stat command or through any of

the stat-family library calls. We did not implement a system call that returns the

entire contents of the file labels tree.

For testing and debugging purposes we also supplied a new system call named

set filelabel, that takes the device and inode numbers as well as a label and sets

the label vector of the file to contain the label. If the file did not have a label vector

associated with it, a new one is created and bound to the file.

5.5 Results

In the following we demonstrate the effectiveness of our approach by showing

how to use the implementation to solve some of the problems discussed earlier.

Furthermore, we will measure performance overhead to show that an implementation

of label propagation is feasible.

We have already demonstrated the feasibility of using labels in the form of process

origin information for the goal of gaining information about the true source of denial-

of-service attacks as well as stepping stones [11,12]. Therefore, for demonstrating the

further usefulness of label propagation, we will limit ourselves to addressing the two

problems of user identity and location information as described in Sections 3.2.1 and

3.2.2. Furthermore, we will simulate a server compromise of a well-known service on

the system and illustrate how the impact of the compromise can be determined by

using host causality origin identifiers.

5.5.1 User Influence

We shall demonstrate the effectiveness of user influence labels by using the exam-

ple from Section 3.2.1. As depicted in Figure 3.1, the process controlled by User A

104

reads data from File 1. It then communicates via IPC with a process controlled by

User B, which subsequently creates a new file with the content of what was commu-

nicated during the exchange with User A.

To associate a user identifier with the processes that are under that user’s control,

we bind the user ID that is assigned to the process at login time to the process as

a label as well. While this may seem redundant at first, note that the user ID of a

process that is recorded in the process table is subject to change during subsequent

login and logout operations (e.g., via the su command), while a label is persistent.

The setlogin system call was modified to add the user identifier as a label to the

process’s label set that invoked the setlogin call.

To illustrate that any labels already attached to the original file will also be

propagated, we first execute the set filelabel system call to bind a label to the

file. Then we execute a program that opens the file, reads data from it and then

opens a TCP connection to a second process with a different user id and transmits

the file. The program also prints out the label set to the console before and after

each operation. The second process (listening on the TCP socket) reads the data

from the first process and then creates a file with the data it received. Finally, we

execute a program that calls get filelabel to see what the label set of the newly

created file is. The output from both user sessions are shown in Figure 5.4.

The setfilelabel program binds the label “File XXX” to the file XXX on the

system. The sender program opens the file specified on the command line, reads a

number of bytes from it, then opens a TCP connection to port 7000 on the local host

and transmits the data that was read from the file. The receiver program listens for

TCP connections on port 7000. Once a connection is established, it reads a number

of bytes from the socket and then creates a new file with the data it received. The

sender and receiver program also print out their label sets before and after the

operations that receive data.

105

SESSION A SESSION B

% ./setfilelabel 265476 649649 "File XXX"

% ./receiver YYY

Receiver starting with pid 162

Label set at start:

Label 0: User 1002

Listening on port 7000

% ./sender XXX

Sender process starting with pid 163

Label set:

Label 1: User 1001

Label set after reading file:

Label 1: User 1001

Label 2: File XXX

Writing data to socket

Connection established

Label set after socket read:

Label 0: User 1002

Label 1: User 1001

Label 2: File XXX

Writing to file YYY

% ./filelabels YYY

File YYY has labels:

Label 0: User 1002

Label 1: User 1001

Label 2: File XXX

Figure 5.4. Output from the user influence test from both user sessions

106

Initially the two processes have only the user id label bound to them.3 After

reading the file, Process A now also contains the label “File XXX”. After receiving

data from the network socket from Process A, Process B has three labels associated

with it: “User 1002”, its original label, as well as labels “User 1001” and “File

XXX”. After Process B creates and writes data to file YYY, the filelabels program

reveals that the label set of file YYY also contains those three labels. An investigator

examining file YYY now can determine that both users 1001 and 1002 could have

played a role in the current state of the file, plus that there is a possibility that the

contents of file XXX might also have been an influence. We can further conclude

that no other users could have been responsible in the creation or modification of

the file YYY.

5.5.2 Location Information

To show that the label propagation also works well with non-custom programs,

we also tested the location information case study as described in Section 3.2.2.

Here, we assign origin information to a file containing C-source code, a library used

in the code, the gcc compiler, and the current session (see Figure 3.2). We do this

manually through programs calling set filelabels and addlabel and then compile

the program. Then we use the program from the previous example to print out the

label set of the newly created file (see Figure 5.5).

As in the example, we bind a label called “OS-CDRom” to “/usr/bin/gcc”, “Con-

sole” to the “sender.c” file, “Website” to the file “printutils.c”, which we compile

in directly as opposed to implementing a library from it first; the result is the

same. Plus, we bind a label “192.168.0.1” to the shell process. We then compile

the “sender.c” program. A filelabels lookup on the file “sender” now shows that

the file is associated with all of the labels of the entities that played a role in its

creation.

3For better readability we actually use a string ’User nnnn’ as a label as opposed to a 2-byte label
containing only the id itself.

107

% ./setfilelabel sender.c Console

% ./setfilelabel /usr/bin/gcc OS-CDRom

% ./setfilelabel printutils.c Website

% ./setproclabel -1 192.168.0.1

% gcc -o sender sender.c printutils.c

% ./filelabels sender

File sender has labels:

Label 0: Console

Label 1: OS-CDRom

Label 2: Website

Label 3: 192.168.0.1

Figure 5.5. Output from the location information case study

5.5.3 Remote System Compromise

A system is compromised, when an unauthorized user has gained control over

the system. This is typically done by exploiting a vulnerability of the system to

receive access to the system and permissions to perform certain tasks. In many

cases, the compromise occurs through the exploit of a vulnerability of one of the

system’s network services. Our label propagation mechanism does not differentiate

between authorized and unauthorized accesses and operations. If we are able to

bind a location label to the process accepting the network traffic, then those labels

are propagated for both legitimate as well as malevolent uses. If a real compromise

occurs from a remote location, all processes and files affected by it will be labeled

with that location label.

To simulate a system compromise we will run a program that accepts network

connections and supplies a shell. This is the basic functionality of a backdoor pro-

gram, but could also be the result of the compromise of a well-known server daemon

process (be it httpd running as the http user, or even sshd running as the root user).

The nature of the compromise (e.g. buffer overflow or script vulnerabilities) is not

important, the end result is the same: a remote attacker has access to a shell with

108

the privileges of the daemon process that was compromised. Thus it is sufficient to

test the label propagation with a “normal” remote login via ssh.

For our labeling approach to capture the entry point of the intrusion, we need to

associate network-location labels to those processes receiving data from the network.

For this, we have modified the accept system call to bind a label to the process

invoking accept whenever a connection is successfully accepted. For demonstration

purposes, we only use the foreign IP address as a label. For a more complete network

identifier, the 4-tuple of foreign IP address and port as well as the protocol and local

port information can be used. For UDP, a similar addition can be made to the recv

and recvfrom system calls.

Figure 5.6 shows an ssh session with location labels enabled. The process running

the proclabels program is clearly marked with the location label4, which means that

the process running the shell also carries the label. Furthermore, if we create new

files on the system or modify existing ones, the label is propagated.

florian@schlaraffenland:~> ssh morpheus-8

Password:

Last login: Tue May 17 14:09:40 2005 from schlaraffenland

Welcome to FreeBSD!

%./proclabels

Process ID: 74778

Label 0: 128.10.243.68

%echo test > testfile

%./filelabel testfile

File testfile has device 0x40d04 and inode 651811

Syscall result: 0. Ret: 1

File testfile has the following labels:

Global pos: 0 data: 128.10.243.68

%

Figure 5.6. An ssh session with location labels

The approach we chose of binding the label at the time of accept has the disad-

vantage that the common network server architecture as described by Stevens [98]

4Again, we bind a string containing the IP address as a label for the purpose of better readability

109

has the server accept a connection and then fork a child process, which inherits all the

connections from its parents and does the actual handling of that particular session,

while the parent process goes back to the listening state. This means that over time

the server process will accumulate all the labels of the past network connections and

pass those labels on to its children. This can be avoided if we supply a new system

call that accepts the connection, automatically forks a child process, and only then

binds the label to the child. An alternative location to bind the network-location

label is the interface on which the data is received. If the label is generated there and

then associated with the mbufs that make up the network packet, then our socket

implementation as described in Section 5.3 will automatically update the labels to

exactly the processes that receive the data. The disadvantage of this is that every

time data enters the system from the network we need to make a lookup whether

the network-location label is already in the system or not, which may slow down

performance.

5.5.4 Performance Overhead

In this section we will describe the results of performance overhead measurements

we performed for the proof-of-concept implementation. We ran our experiments on a

Sun SunFire V60x with an Intel 2.8 GHz Xeon processor, 512MB RAM, and a 36GB

SCSI hard drive. As a baseline we use the generic FreeBSD 4.12 kernel that comes

with the regular installation of the operating system. We then ran the performance

tests on the same hardware booting the modified version of the kernel.

To measure the overall performance, we utilize the LMBench [67] benchmark

suite. LMBench is a set of small micro-benchmarks, which measure system latency

and bandwidth of data movement among the processor and memory, network, file

system, and disk. LMBench is a widely used benchmark suite used to profile many

hardware and software systems, providing more accurate results compared to other

benchmarks in many cases [68]. We have broken down the tests into four categories:

110

1. Processor and process tests. These are tests that measure the time it takes a

process to perform certain tasks. These include a basic system call (null call),

the installing of a signal handler (sig inst.), the signal handler overhead (sig

hand.), the time to fork a new process (fork), the time to execute a simple

program (exec), and the time to execute the ’/bin/sh’ program (sh). Of par-

ticular interest to us are the times for the fork and the executions as these are

directly affected by our modifications. The fork mechanism takes care of the

label propagation by inheritance and the execute test further makes some read

operations to access the specified programs.

2. File system tests. The file system tests consist of several simple tests to measure

the execution time of the read system call for a file (read), the write system

call (write), performing a stat operation on a file (stat), performing an fstat

operation (fstat), the opening and closing of a null file (open/close), as well

as the select operation on 500 file descriptors (select). These tests use the file

system cache, not the actual time it takes for the disk operation as there are too

many unknown factors to consider to generate reproducible results for those.

Of particular interest are the measurements of the read and write operation as

they are directly affected by our modifications.

3. Network latency tests. These tests determine the time it takes for network

messages to propagate. Short control messages are sent back and forth between

processes and the round trip time is measured. This is done for pipes as well

as sockets of types AF UNIX, TCP, and UDP, all within the local host. All

of these tests are relevant as they all measure the performance of the socket

subsystem that we modified.

4. I/O bandwidth tests. The bandwidth test measure the data throughput on

the system. All of these tests write a certain amount of data to a file or

a communication channel in transfers of constant size. The file write test

writes 8MB of data in 64K buffers. For the IPC bandwidth tests two processes

111

are created that transfer the data between them. Pipes transfer 50M in 64K

chunks, and the TCP and AF UNIX sockets transfer 50M in 1M chunks. All of

these tests are relevant as they directly measure the impact of our modifications

to the I/O throughput of the system.

These tests were run on the regular FreeBSD 4.12 kernel (FreeBSD) as well as

on three variants of our modified kernel. The first version (Label-0) is the kernel

with all the modifications for label propagation in place but without any labels

actually present in the system. This captures the overhead of a system with label

propagation in place without labels present, but also gives a measure for how the

socket subsystem is affected if the processes involved have no label sets associated

with them. The second version (Label-s), in addition to the Label-0 version also

has a label associated with the shell process that invokes the LMBench test suite.

It is sufficient to only bind one label to the process as the entire label vector is

propagated once a process is marked to have labels. Furthermore, a small set of files

is marked with labels as well. This number is initially one, but as files are created

during the performance test, the number will increase slightly. This version will give

a measure for the socket subsystem overhead as well as the file system performance

for a small set of files with labels. The last version (Label-l), in addition to the

Label-s version, has a large number of files in the system. This will give a measure

for the file system overhead for a large number of files.

To label the files for the Label-l set, we used a program that utilizes the

set filelabel system call in a for-loop for different inode numbers to generate

a set of 100,000 files – 50,000 for each of the two disk partitions on the system – that

have labels associated with them. The maximum number of labels in the system was

set to 1024, which means that the label vectors are 128 bytes long. The number was

chosen to be significantly higher than the number of users on the system (around

20) so that we gain a measure for a large fixed-size label set implementation. For

a fixed-label system this is a large number – for user identification labels we would

expect the size to normally lie anywhere between 10 and 100 – so the overhead mea-

112

surements are pessimistic. Each test was performed 200 times for each kernel version,

and the results are shown in Tables 5.1 through 5.4. Detailed measurement results

including mean, standard deviation, minimum, and maximum for each version are

included in Appendix 6.

Table 5.1
Processor and process tests – times in µs

Kernel Null call sig inst. sig hand. fork exec sh

FreeBSD 0.4504 0.6643 1.3467 129.0783 594.1023 1176.8880

Label-0 0.4499 0.6666 1.3404 128.3902 596.1760 1173.6708

Label-s 0.4498 0.6650 1.3364 129.1161 602.4783 1185.3990

Label-l 0.4501 0.6658 1.3393 129.1359 604.5881 1187.9500

Table 5.1 shows that our experiments show only a slight increase in execution

time for the process tests. System calls and signal handling is not affected by our

modifications. The fork system call has to copy an extra 132 bytes, 128 for the label

vector and 4 for the label flag. The measured overhead for this is less than 1%. The

times for the exec and /bin/sh tests are influenced by the file system performance.

The observed overhead here lies between 0.3% when no labels are present to 1.7%

for the large set of labeled files (both for the exec test).

Table 5.2
File system tests – times in µs

Kernel read write stat fstat open/close select

FreeBSD 1.0437 0.9836 2.2547 0.6598 3.3546 19.8101

Label-0 1.1235 0.9839 2.2744 0.6649 3.4365 20.0437

Label-s 1.2139 1.3903 2.2739 0.6662 3.4457 19.9333

Label-l 1.3297 1.4934 2.3362 0.6621 3.4701 19.9283

113

Table 5.2 shows the execution times for the file system calls. As expected, there is

no noticeable difference between the FreeBSD and the Label-0 kernels. We measured

a an average of 0.0798 µs (7.6% overhead) for the read test, which can be attributed

to the lookup that is performed for the file. The stat, fstat, open/close, and

select test did not have any noticeable differences between the kernel versions, as

expected. With labels present on the system the read test now showed a difference

of 0.1702 µs (16.3%) for the small label set and a difference of 0.2860 µs (27.4%)

for the large label set. When comparing the Label-s and Label-l versions, the

overhead for the 100,000 labeled files (a binary search tree depth of about 16) is

0.1831 µs (15.1%). For the write test, there is no noticeable difference between

the FreeBSD and the Label-0 versions. This was to be expected as no lookups are

performed and no labels need to be inserted into the binary tree. For the remaining

two versions, the write test was measured with an overhead of 0.4067 µs (41.3%)

for Label-s and 0.5098 µs (51.9%) for Label-l, respectively. This is because first

a lookup is performed to see if a label set is already present in the search tree, and

if not one needs to be allocated and inserted. When comparing the small and the

large label set versions, we observed an overhead of 0.1031 µs (7.4%). Note that all

the observed differences lie in the tenths of microsecond range and were performed

on the file system cache for a small read and write buffer. This makes it difficult

to predict what the effect on a “normal” system is. The results do, however, reflect

the worst case scenario, where a program performing rapid and short read or write

operations could be slowed down noticeably. For the general case, though, we do not

expect this to occur.

The local networking latency times are shown in Table 5.3. The measured over-

head in all instances is small. There is no noticeable difference between the FreeBSD

and Label-0 versions, as expected. For Label-s the we measured an average over-

head of 8.2% for AF UNIX sockets, 6.1% for UDP, and 6.4% for TCP. Label-l has

an observed overhead of 8.4% for AF UNIX, 5.9% for UDP, and 6.5% for TCP. The

fact that the measurements for the pipe latency do not vary noticeably between the

114

Table 5.3
Network latency tests – times in µs

Kernel pipe AF UNIX UDP TCP

FreeBSD 11.2702 12.5225 17.0421 17.8300

Label-0 11.4273 12.6802 17.1144 18.0908

Label-s 11.4340 13.5479 18.0801 18.9715

Label-l 11.4582 13.5722 18.0479 18.9950

different versions leads us to believe that pipes on FreeBSD do not utilize the socket

subsystem despite such claims [65].

Table 5.4
I/O bandwidth tests – in MB/s

Kernel file write 5 TCP AF UNIX pipe

FreeBSD 63576.9450 377.8209 617.4526 1845.4127

Label-0 63571.9400 385.6075 612.9818 1842.9119

Label-s 63630.4250 365.5163 544.0799 1835.8787

Label-l 63595.2050 366.4497 543.9735 1833.3753

Table 5.4 shows the I/O bandwidth measurement results. Surprisingly, despite

the rather large overhead for the write system call test the file write performance

does not differ noticeably from that of the original FreeBSD kernel, even outper-

forming it slightly during our measurements for Label-s and Label-l. Between

the FreeBSD and Label-0 versions we did not observe any noticeable difference.

The fact that there is a 2.0% improvement in our measurements for Label-0 in the

TCP throughput, however, suggests that there is a large variance in the network

bandwidth tests as can also be seen in the standard deviation values in Appendix 6.

5file write is in KB/s

115

Label-s shows a deprecation of 3.3% in the TCP throughput and a deprecation of

11.9% for the AF UNIX bandwidth. For Label-l we measured a TCP bandwidth

3.0% worse than FreeBSD and an AF UNIX deprecation of 11.9%. Again, pipes are

not noticeably affected by process labeling, which we take as further evidence that

they do not use the socket subsystem.

The overall performance overhead that we observed in our experiments for process

labeling is promising. The overhead for the individual tests ranges from smaller than

1% to no more than 10% in many cases. The read and write tests carry a higher

overhead of up to 51.9%, but the file write bandwidth was not affected at all. For

programs that frequently write small amounts of data into the file system cache this

will be a problem, but overall we do not expect the file system slowdown to be severe,

especially when factoring in the time to write the cache to the disk.

The network measurements were performed for a label vector size of 128 bytes

(1024 labels), and we expect the overhead to be smaller for smaller vector sizes. This

may well be the case for certain fixed-label set size applications of a process labeling

approach, such as user influence, where we expect the label vectors to be smaller

than 10 bytes for most systems. If a fully dynamic approach with a potentially

unbounded label set size is desired, however, performance is likely to suffer more.

116

6 CONCLUSIONS

In this dissertation we have determined that there is a lack of audit data on current

computing systems. As a result of this certain relations between events cannot be

established or only insufficiently so through cost-intensive and manual analysis. We

further presented a label-propagation model, that lets the system propagate arbitrary

labels of information among its principals and objects based on how information flows

within the system. We have demonstrated how those labels can be used to gain

some of the desired information regarding the causal effects of events. Our proof-of-

concept implementation shows the feasibility of incorporating label propagation for

a production-type operating system with little to no overhead.

Of the questions of who did what, where, when, how and why, only a few can be

answered from the information collected by current computing systems. This is in

part because of space constraints, but also, as we have discussed, because some of the

desired information is impossible to obtain on systems that run arbitrary programs.

Forensics and security were not design objectives for the most commonly used file

systems. Some of our desired information could be obtained by, for example, record-

ing more information on one-time events such as the creation of a file. The “create”

timestamp, the user who created a file, and the user agent path could be recorded

in a fixed amount of space. Other information such as detailed file modification or

access information are unbounded in their space requirements and therefore record-

ing them might not be suitable in every situation. Moreover, information such as

user influence or location of file operations are generally undecidable, which means

that the information is not recorded and heuristics must be used, or only verified

programs are allowed to be executed on the system.

117

Not every system is suited to collect all of the desired information we have dis-

cussed in Chapter 3. For a typical home computer none of the extra information may

be worth the space requirements or restrictions that would result from recording it.

However, when factors such as due diligence, protecting critical information, or being

able to quickly determine what happened on a computing system are important, all

of the extra information discussed may play an important role. Current systems do

not offer the ability to record much of the desired information even if one wanted to

record it.

Some of the information that we classified in Section 3.1 outside Category 1 may

immediately be recorded by existing systems. A file creation time that cannot be

modified anymore should be present on any file system. Recording the user id of the

process performing file creation, access, or modification is also a simple inexpensive

addition of more valuable data. In general, however, it will depend on the kind of

system as to which of the information we have discussed in this paper should actually

be recorded and how much of it. Recording everything we have mentioned on every

system is not realistic. However, policies in some organizations may require recording

a large portion of it. These may range from high-security computing systems, where

even the access of certain files should be documented in its most complete form (who,

where, when, how?), to home computers where maybe only the question of where

certain files came from matters.

In the future of system and file system design, forensics and security will play a

more important role. For some of the information we discuss in Chapter 3 we do not

offer explicit solutions on how to implement obtaining and storing it. This is part of

future research in the field of digital forensics. Nor do we mandate what kind and

how much information should be recorded. This will depend on individual systems

and the requirements they have in regard to forensics. We do, however, hold the

opinion that if desired, it should be able to record such information.

118

In Chapter 4 we have presented a general model for label propagation based on

information flow among principals. Labels may be used to propagate meta informa-

tion about the principals as they communicate with each other. The case studies

demonstrate in which manner labels can be utilized to generate audit data for digi-

tal forensics or intrusion detection, or data that can be used for access control. The

model does not attempt to control information flow, it merely adds new information

in the form of labels to those flows. Because we use a heuristic to determine causality

there will be a number of false positives. This is acceptable because having to infer

which information may have caused the output of a principal from a (small) set of

prospective culprits is better than having no indication at all what caused the output

(any principal could have).

However, labels are mostly meaningful when their presence at principals and

objects is limited. For example, if labels are user identifiers, and a User A’s actions

were influenced by another malicious User B, then A’s process is labeled with both

user ids. If only those two labels are present and there is malicious behavior by A

the list of potential culprits may be narrowed down to A and B. If, for whatever

reason, A is labeled with all possible user identifiers on the system, the labels have

become worthless because no information may be gained from them. For this reason,

a production system that implements our model should make sure that labels are

only propagated when necessary and that a principal cannot add new labels to its

label set frivolously to obscure its label set. Our proof-of-concept implementation

in Chapter 5 adheres to these principles. Also, it might be necessary to develop

new, label-friendly programming paradigms. These could include the concept of an

execution context for processes, where a new context is created for a specific task

and then discarded without the process gaining information about what occurred

while the context was active. This way, labels could be bound to the context and

disappear with it instead of remaining with the process even though they are not

relevant for any new tasks.

119

Currently, network services on a system are offered through special daemon pro-

cesses that accept the network connections and then spawn off a child process that

handles the rest of the communication. If location information were added as a label

to those processes each time a connection is accepted, soon the daemon process as

well as all its subsequent child processes will carry all those labels unnecessarily. To

avoid this situation, the server paradigm needs to be changed. The above situa-

tion could be solved by some sort of combined accept-fork new system call, that

accepts the connection, forks a child process, and then binds the label only to the

child. Alternatively, labels could be generated directly at the network interface to

label network packets. The advantage of the former is that labels are created less

frequently, reducing the cost of lookup for existing labels. The advantage of the

latter is that only processes that actually read the network packets are updated with

the new labels. This way, the existing paradigm need not be modified at all.

In Section 4.3 we discuss space management models. Whenever a loose space

management model is used, labels will be lost. Depending on which labels are deleted

when and what type of audit recording of labels takes place, a malicious principal

may attempt label washing: getting rid of (some of) his own labels by acquiring

more labels or making other principals take on more labels. While this can not be

prevented, intensive auditing and techniques from intrusion detection for abnormal

system behavior could be utilized to identify those attempts.

If strict space management models are in place, a malicious principal may perform

denial-of-service attacks on the system by exhausting the resources for storing the

labels. If a global label pool exists all principals will be denied further operations. If

label space is localized, then a principal may still perform a denial-of-service attack

on others if he can “trick” other principals to acquire a large label set. This could

be done by “infecting” an object that is accessed by many principals with a large

label set.

For these reasons any framework that utilizes the model should make sure that

labels only be propagated and created when absolutely necessary. Well-behaving

120

principals from our case studies should not carry many labels in their label sets. In

a computing system, opportunities need to be created for programmers who develop

label-friendly programs. If the framework is used to enforce policy, then access con-

trol mechanisms need to be implemented in conjunction with the label propagation.

This can further reduce the probability that a well-behaving principal acquires un-

necessary labels. For example, if a user by default does not have any access to other

users’ data, he will only pick up another user label if that user explicitly grants such

access and the data is actually accessed. If the framework is used to monitor policy

violations, some sort of alert mechanism, such as in intrusion detection, could be

utilized to identify principals and objects whose label sets satisfy certain parame-

ters. For this, some sort of human control mechanism that allows an investigation of

the label sets and also removal of labels after the investigation, if necessary, may be

useful to keep the overall label sets small. For example, after a remote compromise

has been detected and contained, the files that were affected by it should be cleared

of the labels obtained during the compromise and its consequences. Naturally, such

a control mechanism should lie outside the normal system capabilities, such as a

special run-level with an operator sitting at the console.

Given this, it becomes clear that a computing system for the average home user

is not the target platform for our model. Limitations imposed on the system would

be too restrictive to justify the benefits. For example, if peer-to-peer file sharing

software were executed for a host causality system, a single file, once completely

downloaded, may already have hundreds of labels bound to it. If the user then

accesses the file via a shell command, the process running the shell inherits the

labels and so will all the subsequent processes that are executed from that shell and

the files that are affected by them.

In some cases it might be sufficient to address only true data exchange channels

for our label propagation. This means that storage channels through shared objects

are not considered. This can easily be done by not modifying the label sets for the

open and close operations of our model. This is the case for our proof-of-concept

121

implementation. Such a framework will capture lesser forms of information flow

but it is still useful as we expect label sets to stay smaller in general. Malicious

principals could now utilize these storage channels to bypass the model, but those

channels are low-bandwidth and for certain cases raising the bar in such a manner

might be sufficient.

In Chapter 5 we have discussed how to implement the propagation model for a

production-type operating system, namely FreeBSD. We have chosen an operating

system kernel for our implementation as the kernel’s system call interface to the user

space closely resemble the operations described in our model. For label propagation

to be secure in this scenario, we have to make the assumption that the kernel is

trusted and untampered. Securing the kernel is certainly outside the scope of the

work we presented in this dissertation but project such as LIDS [115] can be used for

such measures. An operating system’s kernel is not the only place where labeling of

principals may be implemented. Integrating label propagation into a virtual machine

will enhance the trustworthiness of the labels but comes at the cost of utilizing the

virtual machine. This approach is already being realized [51]. But label propagation

may also be utilized in user applications or a middle-ware layer. This may be desired

when the label granularity of system objects is too coarse to be of value for certain

applications. Consider a database management system where the databases are

stored in large files. Associating labels about database transactions with the files

themselves might result in too many labels being associated with too many entities

of the database system. If instead the database management system implemented

label propagation through the interface it provides to the clients, labels could be

used to analyze or enforce information flow within a database.

The data structures we have used for our proof-of-concept implementation were

designed for a fixed-size label set. Furthermore, we decided to keep the accounting

for file object label within kernel memory as opposed to implement label support

for a file system. Overall, the optimal data structures for label propagation will

122

depend closely on the types of labels that need to be supported. Our overhead

measurements are conservative. For a fixed-size label set user influence approach we

do not expect that 1024 labels are needed on the system. The disk I/O measurements

were conducted on the cached portion of the file system, meaning that when factoring

in time for actual disk access, the overhead we measured for the read and write

calls is negligible, as well. Despite the conservative measurements, the performance

results are encouraging. We have measured an overhead between 0% and roughly

10% for all of our tests except for the read and write system call times. Most of

the overhead measured here we attribute to the managing of the binary search tree.

Thus, if label support is added directly to a file system, we expect this overhead to

be reduced, significantly, as well.

An interesting area of immediate future research in label propagation is therefore

the development of suitable data structures for different kinds of labels. This includes

how to manage all the labels known globally to the system, but also how each process

and object is associated with a label set. This research needs also be concerned with

how to permanently store labels on the system, as in our implementation all labels

are lost when the system restarts. This is no trivial problem, as labels preserved on

long term storage may need to be incorporated into a running system at a different

time than the system’s start up routine.

The examples we provide in Sections 5.5.1, 5.5.2, and 5.5.3 demonstrate the

effectiveness of our approach. We had already demonstrated the value of labeling for

network traceback in earlier work [11,12]. When examining processes and objects on

the system we now can make statements as to whether or not they were influenced by

external factors such as different users of remote locations. We are not able to assert

for sure that if a label is found there was an actual influence, but we have proven

in Chapter 4 that the lack of such labels means that no communication took place

through those channels of the system that support label propagation. Keeping the

label sets of the principals and objects of a system small is therefore an important

123

goal, which further needs to be addressed by future research. For this, a combination

of label propagation and access control mechanisms could be devised.

Limitations

The work we present in this document addresses many important aspects of

label propagation, the model’s properties, space concerns, and correctness as well

as usability. However, there are limitations that we do not specifically address but

may be of concern. Some of the limitations we discuss in the following apply to the

implementation of the model only, whereas others are also true for the theoretical

models.

The label data is not encrypted and potentially can be seen by any user on the

system. Depending on the nature of the label, this may lead to privacy concerns.

One simple measure could be to limit access to the labels only to a limited set of

users (e.g. via the getlabel system call), for example the system administrators.

However, this may not be sufficient in all scenarios. One can imagine labels whose

propagation is desired but where only the originator of the label should have the

option to disclose the data. Using a random token instead of the actual label data

may solve the problem in some cases, but once the mapping of token to data is

revealed, all users once again have access to the label data. However, because the

only requirement we impose on the label update function is that the label needs

to be preserved (or at least one should be able to deduce the previous label from

the current one), one can imagine the use of cryptographic functions that generate

a unique identifier for the result of each update operation, where the original label

data may be decrypted with a key. However, we would expect that this functionality

would come with a performance cost.

When a principal or an object accumulates many labels, the usefulness of the la-

bels’ presence degrades. When a subject possesses all possible labels, an investigator

has gained no extra information compared to a system that does not utilize label

124

propagation. This kind of label obfuscation may be attempted deliberately by a mali-

cious principal to obfuscate his tracks. In many existing systems there exist globally

writable objects that are read by many principals on the system. In FreeBSD there

is the syslog facility to which all processes may report and is further accessed by

many processes on the system. Services such as cron and at also may pick up labels

from all the processes that utilize them. These globally shared objects are a prob-

lem when looking to avoid label obfuscation. One could try to eliminate the global

sharing by providing mini-services that are valid only for one given process. While

this may be acceptable for cron and at, a per-process syslog service would yield

scattered log files, with much less usefulness than a single log file would have.

The above discussion about how to deal with label obfuscation and globally

shared resources on an existing system shows that label propagation will not always

work smoothly together with existing systems. Our proof-of-concept implementation

shows that label propagation can work with a system such as FreeBSD, but some of

the limitations will be difficult if not impossible to remove. The intent of our work

lies primarily in the introduction of the label propagation paradigm. While legacy

systems may be adapted for label propagation, we feel that systems designed with

label propagation in mind will benefit the most from the concepts discussed here.

But not only systems should be designed with label propagation in mind. label-

friendly programming techniques could be used to keep the label set of a process

as small as possible. If all “normal” programs adhere to this principle, misbehaving

processes could be better identified and contained.

The implementation of label propagation we present in this dissertation does

not support separate label sets for threads of a multi-threaded process. As threads

share memory space among them, the system is not able to monitor information

flow between threads. Given that some programs use a large number of threads

to perform tasks, in some cases the granularity of labels for the entire process may

be too coarse, meaning that the process will accumulate all of its threads’ labels.

However, as with shared memory, barring special hardware that can monitor those

125

information transfers, implementing label propagation on the operating system level

prohibits label propagation on the thread-level.

Labels are not stored permanently in our proof-of-concept implementation. Once

the system reboots, all labels are lost. Incorporating label support directly into a

file system, as mentioned above, is one necessary step to achieve a permanent label

retention on a system. In addition to that the labels need to be read from storage

at start-up and be written to storage at shutdown. This introduces the danger that

labels may not be stored when the system is not shut down properly (i.e. it crashes).

Storing the label periodically can reduce the amount of labels that is potentially lost,

but the threat of losing labels remains. Also, if labels sets are stored in label-vectors

as in our proof-of-concept implementation, the global label table needs to keep labels

always in the same order. This is because not all labels are necessarily introduced

to the system at start-up. Some file systems with labels may be mounted at a later

time at which point the label-vector bits need to point to the correct entries in the

label table. Furthermore, if a file system from a different system is mounted and

also has labels associated with it, the new labels need to be incorporated into the

current system or be discarded. In the former case, the label data has to be stored

on the file system device, as well.

Future Work

In this dissertation we have demonstrated that it is possible to add significantly

useful audit information to a system with little computational overhead by binding

labels that convey information such as user identity or location information to prin-

cipals on the system and propagate those based on how information flows between

principals and objects. The above discussion shows that there is still research to be

done in the area of run-time label propagation and with this dissertation we only lay

the foundation for it. As part of the immediate future work, we see the following:

126

• Research if and how existing programs and programming paradigms fit in with

a label propagation framework in regard to the amount of labels they accumu-

late and the implications for access control that has in strict models.

• Determine how to integrate label propagation into access control and intrusion

detection mechanisms.

• Devise a configurable space management mechanism for labels that allows to

associate subjects with resource groups and enforce label label constraints as

discussed in Section 4.3.

• Explore new uses for labels outside of those discussed in this dissertation.

• Identify scenarios where label propagation and its (possible) limitations award

the most benefits to justify its use.

LIST OF REFERENCES

127

LIST OF REFERENCES

[1] G.M. Adelson-Velskii and E.M. Landis. An Algorithm for the Organization of
Information. Dokladi Akademia Nauk SSSR, 146(2):1259–1262, 1962.

[2] M. Adler. Tradeoffs in Probabilistic Packet Marking for IP Traceback. In
Proceedings of the 34th ACM Symposium on Theory of Computing (STOC),
2002.

[3] James P. Anderson. Computer Security Threat Monitoring and Surveillance.
Technical report, James P. Anderson Co., April 1980.

[4] D. Bell and L. LaPadula. Secure Computer Systems: Mathematical Founda-
tions and Model. MITRE Report MTR 2547 v2, 1973.

[5] S. Bellovin, Marcus Leech, and Tom Taylor. ICMP Traceback Messages. Tech-
nical report, IETF Internet Draft, February 2003. Work in progress.

[6] S. M. Bellovin. Security Problems in the TCP-IP Protocol Suite. Computer
Communications Review, 19(2):32–48, April 1989.

[7] K. Biba. Integrity Considerations for Secure Computer Systems. Technical
Report MTR-3153, MITRE Corporation, Bedford, MA, 1977.

[8] D. Brewer and M. Nash. The Chinese Wall Security Policy. In Proceedings
of the 1989 IEEE Symposium on Security and Privacy, pages 206–214, May
1989.

[9] Florian Buchholz. The Structure of the Reiser File System. http://www.
cerias.purdue.edu/homes/florian/reiser/reiserfs.php.

[10] Florian Buchholz, Thomas E. Daniels, Benjamin Kuperman, and Clay Shields.
Packet Tracker Final Report. Technical Report 2000-23, Center for Educa-
tion and Research in Information Assurance and Security (CERIAS), West
Lafayette, IN, 47901, 2000.

[11] Florian Buchholz and Clay Shields. Providing Process Origin Information
to Aid in Network Traceback. In Proceedings of the 2002 USENIX Annual
Technical Conference, Monterey, CA, July 2002. CERIAS TR 2002-22.

[12] Florian Buchholz and Clay Shields. Providing Process Origin Information
to Aid in Computer Forensic Investigations. Journal of Computer Security,
12(5):753–776, September 2004.

[13] Florian Buchholz and Eugene H. Spafford. On the Role of File System Meta-
data in Digital Forensics. Journal of Digital Investigation, 1(4):298–309, De-
cember 2004.

128

[14] Florian Buchholz and Eugene H. Spafford. A Model for Label Propagation
Based on Causality. under submission, 2005.

[15] Michael A. Caloyannides. Computer Forensics and Privacy. Artech House,
Norwood, MA, 2001.

[16] Rémy Card, Theodore Ts’o, and Stephen Tweedie. Design and Implementa-
tion of the Second Extended Filesystem. In Frank B. Brokken et al., editor,
Proceedings of the First Dutch International Symposium on Linux, 1994.

[17] B. Carrier and C. Shields. A Recursive Session Token Protocol for Use in
Computer Forensics and TCP Traceback. In Proceedings of the IEEE Infocomm
2002, June 2002.

[18] Brian D. Carrier and Eugene H. Spafford. Defining Event Reconstruction of
Digital Crime Scenes. Journal of Forensic Sciences, 49(6), 11 2004. CERIAS
TR 2004-37.

[19] Eoghan Casey, editor. Handbook of Computer Crime Investigation. Academic
Press, San Diego, CA, 2002.

[20] Eoghan Casey. Digital Evidence and Computer Crime. Academic Press, San
Diego, CA, second edition, 2004.

[21] Characterizing and Tracing Packet Floods Using Cisco Routers. http://www.
cisco.com/warp/public/707/22.html.

[22] Franklin Clark and Ken Diliberto. Investigating Computer Crime. CRC Press,
Boca Raton, FL, 1996.

[23] R.C. Daley and P.G. Neumann. A General-Purpose File System For Secondary
Storage. In Fall Joint Computer Conference, 1965.

[24] Thomas E. Daniels. Reference Models for the Concealment and Observation of
Origin Identity in Store-and-Forward Networks. PhD thesis, Purdue Univer-
sity, West Lafayette, IN, 12 2002. CERIAS TR 2002-31.

[25] D. Dean, M. Franklin, and A. Stubblefield. An algebraic approach to ip trace-
back. ”ACM Transactions on Information and System Security (TISSEC)”,
5(2):119–137, May 2002.

[26] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
Technical Report RFC 2460, Internet Society, December 1998. ftp://ftp.
isi.edu/in-notes/rfc2460.txt.

[27] Dorothy E. Denning. A Lattice Model of Secure Information Flow. Commu-
nications of the ACM, 19(5):236–243, 1976.

[28] Dorothy E. Denning. Secure Personal Computing in an Insecure Network.
Communications of the ACM, 22(8):476–482, 1979.

[29] Dorothy E. Denning and Peter J. Denning. Certification of Programs for Secure
Information Flow. Communications of the ACM, 20(7):504–513, 1977.

129

[30] Dorothy E. Denning and Peter F. MacDoran. Location-based Authentication:
Grounding Cyberspace for Better Security. In Internet Besieged: Countering
Cyberspace Scofflaws, pages 167–174. ACM Press/Addison-Wesley Publishing
Co., 1998.

[31] Trusted Computer System Evaluation Criteria. Technical report, Department
of Defense, December 1985. 5200.28-STD.

[32] T. W. Doeppner, P. N. Klein, and A. Koyfman. Using Router Stamping to
Identify the Source of IP Packets. In 7th ACM Conference on Computer and
Communications Security, pages 184–189, Athens, Greece, November 2000.

[33] D. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Staniford. Mul-
tiscale stepping-stone detection: Detecting pairs of jittered interactive streams
by exploiting maximum tolerable delay. In Proceedings of the 2002 Recent
Advances in Intrusion Detection (RAID), 2002.

[34] G.W. Dunlap, S.T. King, S. Cinar, M.A. Basrai, and P.M. Chen. ReVirt:
Enabling Intrusion Analysis through Virtual-machine Logging and Replay. In
5th Symposium on Operating Systems Design and Implementation, December
2002.

[35] James P. Early. An Embedded Sensor for Monitoring File Integrity. Technical
report, CERIAS, January 2002. CERIAS TR 2001-41.

[36] Dan Farmer and Wietse Venema. Forensic Discovery. Addison Wesley, Boston,
MA, 2004.

[37] J.S. Fenton. Memoryless Subsystems. The Computer Journal, 17(2), 1974.

[38] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of
Service Attacks Which Employ IP Source Address Spoofing. Technical Report
RFC 2827, Internet Society, May 2000.

[39] J. Chapman Flack and Mikhail Atallah. A Toolkit for Modeling and Compress-
ing Audit Data. Technical report, COAST, Purdue University, 1998. COAST
TR 98-20.

[40] FreeBSD Operating System. http://www.freebsd.org.

[41] S. Garfinkel, G. Spafford, and A. Schwartz. Practical Unix and Internet Secu-
rity. O’Reilly, third edition, 2003.

[42] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection Based Ar-
chitecture for Intrusion Detection. In 2003 Symposium on Network and Dis-
tributed System Security, February 2003.

[43] J.A. Goguen and J. Meseguer. Security Policies and Security Models. In
Proceedings of the IEEE Symposium on Research in Security and Privacy,
pages 11–20, Oakland, CA, 1982.

[44] R. Hagmann. Reimplementing the Cedar File System Using Logging and
Group Commit. In Proceedings of the Eleventh ACM Symposium on Oper-
ating Systems Principles, pages 155–162. ACM Press, 1987.

130

[45] Nevin Heintze and Jon G. Riecke. The SLam Calculus: Programming with
Secrecy and Integrity. In ACM, editor, Conference record of POPL ’98: the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, San Diego, California, 19–21 January 1998, pages 365–377, New York,
NY, USA, 1998. ACM Press.

[46] Kohei Honda, Vasco Vasconcelos, and Nobuko Yoshida. Secure Informa-
tion Flow as Typed Process Behaviour. Lecture Notes in Computer Science,
1782:180–199, 2000.

[47] IEEE Standard for Information Technology - Portable Operating System In-
terface (POSIX). http://standards.ieee.org/catalog/olis/arch_posix.
html.

[48] Institute for Security Technology Studies. Law Enforcement Tools and Tech-
nologies for Investigating Cyber Attacks: A National Needs Assessment. Tech-
nical report, Dartmouth College, 2002.

[49] Institute for Security Technology Studies. Law Enforcement Tools and Tech-
nologies for Investigating Cyber Attacks: Gap Analysis Report. Technical
report, Dartmouth College, February 2004.

[50] J. Ioannidis and S. M. Bellovin. Pushback: Router-Based Defense Against
DDoS Attacks. In Proceedings of the 2002 Network and Distributed System
Security Symposium, San Diego, CA, February 2002.

[51] Xuxian Jiang, Dongyan Xu, and Florian Buchholz. Tracking Worm Contami-
nation: a Process Coloring Approach. under submission, May 2005.

[52] R. Joshi, K. Rustan, and M. Leino. A Semantic Approach to Secure Informa-
tion Flow. Science of Computer Programming, 37(1–3):113–138, 2000.

[53] H.T. Jung, H.L. Kim, Y.M. Seo, G. Choe, S.L. Min, C.S. Kim, and K. Koh.
Caller Identification System in the Internet Environment. In UNIX Security
Symposium IV Proceedings, pages 69–78, 1993.

[54] Richard A. Kemmerer. Shared Resource Matrix Methodology: An Approach
to Identifying Storage and Timing Channels. ACM Transactions on Computer
Systems, 1(3):256–277, August 1983.

[55] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol.
Technical Report RFC 2401, Internet Society, November 1998. ftp://ftp.
isi.edu/in-notes/rfc2401.txt.

[56] Gene H. Kim and Eugene H. Spafford. The Design and Implementation of
Tripwire: A File System Integrity Checker. In ACM Conference on Computer
and Communications Security, pages 18–29, 1994.

[57] Samuel T. King and Peter M. Chen. Backtracking Intrusions. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, pages
223–236. ACM Press, 2003.

[58] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging Operating
Systems with Time-traveling Virtual Machines. In Proceedings of the 2005
Annual USENIX Technical Conference, April 2005.

131

[59] Warren G. Kruse II and Jay G. Heiser. Computer Forensics: Incident Response
Essentials. Addsion-Wesley, Boston, MA, 2002.

[60] Benjamin A. Kuperman. A Categorization of Computer Security Monitoring
Systems and the Impact on the Design of Audit Sources. PhD thesis, Purdue
University, West Lafayette, IN, 08 2004. CERIAS TR 2004-26.

[61] B. Lampson. Protection. In Proc. 5th Princeton Conf. on Information Sciences
and Systems, Princeton, 1971. Reprinted in ACM Operating Systems Rev. 8,
1 (Jan. 1974), pp 18-24.

[62] Butler W. Lampson. A Note on the Confinement Problem. Communications
of the ACM, 16(10):613–615, 1973.

[63] Paul J. Leach and Rich Salz. UUIDs and GUIDs. http://www.webdav.org/
specs/draft-leach-uuids-guids-01.txt.

[64] P. Loscocco and S. Smalley. Integrating Flexible Support for Security Policies
into the Linux Operating System. Technical report, NSA Information Assur-
ance Research Group, February 2001.

[65] M.K. McKusick, K. Bostic, M.J. Karels, and J.S. Quarterman. The Design and
Implementation of the 4.4 BSD Operating System. Addison Wesley, Boston,
MA, 1996.

[66] John McLean. Proving Noninterference and Functional Correctness Using
Traces. Journal of Computer Security, 1(1), 1992.

[67] L. McVoy and C. Staelin. LMBench: Portable Tools for Performance Analysis.
In USENIX Annual Technical Conference, January 1996.

[68] L.W. McVoy and S.R. Kleiman. Extent-like Performance from a Unix File
System. In USENIX Winter Conference, pages 33–43, January 1991.

[69] Microsoft Corporation. FAT: General Overview of On-disk Format. http:
//www.microsoft.com/hwdev/download/hardware/fatgen103.pdf, 1999.

[70] G. Mohay, A. Anderson, B. Collie, O. De Vel, and R. McKemmish. Computer
and Intrusion Forensics. Artech House, Norwood, MA, 2003.

[71] D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial of Service
Activity. In Proceedings of the 2001 USENIX Security Symposium, Washington
D.C., August 2001.

[72] R.T. Morris. A Weakness in the 4.2BSD Unix TCP-IP Software. Techni-
cal Report 17, AT&T Bell Laboratories, 1985. Computing Science Technical
Report.

[73] Ira S. Moskowitz and Myong H. Kang. Covert Channels - Here to Stay? In
Compass’94: 9th Annual Conference on Computer Assurance, pages 235–244,
Gaithersburg, MD, 1994. National Institute of Standards and Technology.

[74] The National Insistute of Justice. Electronic Crime Needs Assessment for State
and Local Law Enforcement. http://www.ojp.usdoj.gov/nij/pubs-sum/
186276.htm, April 2001.

132

[75] J. Palsberg and P. Ørbæk. Trust in the Lambda-calculus. Journal of Functional
Programming, 7(6):557–591, 1997.

[76] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,
MA, 1994.

[77] K. Park and H. Lee. On the Effectiveness of Probabilistic Packet Marking for
IP Traceback under Denial-of-service Attack. In Proceedings IEEE INFOCOM
2001, pages 338–347, April 2001.

[78] K. Park and H. Lee. On the Effectiveness of Route-Based Packet Filtering for
Distributed DoS Attack Prevention in Power-Law Internets. In Proceedings of
the 2001 ACM SIGCOMM, San Diego, CA, August 2001.

[79] C.P. Pfleeger and S.L. Pfleeger. Security in Computing. Prentice Hall PTR,
Upper Saddle River, NJ, third edition, 2003.

[80] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,
Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing
Systems, 8(3):221–254, Summer 1995.

[81] J. Postel. Internet Protocol. Technical Report RFC 791, Internet Society,
September 1981. ftp://ftp.isi.edu/in-notes/rfc791.txt.

[82] T. Ptacek and T. Newsham. Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection. Technical report, Secure Networks, Inc., January
1998.

[83] Hans Reiser. Reiser File System Whitepaper. http://www.namesys.com.

[84] H.G. Rice. Classes of Recursively Enumerable Sets and their Decision Prob-
lems. Transactions of the American Mathematical Society, 74:358–366, 1953.

[85] D.M. Ritchie and K. Thompson. The UNIX Time-Sharing System. In Fourth
ACM Symposium on Operating System Principles, Yorktown Heights, New
York, October 1973.

[86] M.K. Rogers and K. Seigfried. The Future of Computer Forensics: A Needs
Analysis Survey. Computers & Security, 26, 2004.

[87] G.-C. Rota. The Number of Partitions of a Set. American Mathematical
Monthly, 71:498–504, 1964.

[88] J. Rowe. Intrusion Detection and Isolation Protocol: Automated Response
to Attacks. Presentation at Recent Advances in Intrusion Detection (RAID),
1999.

[89] A. Sabelfeld and A. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003.

[90] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C.
Veitch, Ross W. Carton, and Jacob Ofir. Deciding When to Forget in the
Elephant File System. In Symposium on Operating Systems Principles, pages
110–123, 1999.

133

[91] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network Sup-
port for IP Traceback. In Proceedings of the 2000 ACM SIGCOMM Conference,
August 2000.

[92] B. Schneier and J. Kelsey. Secure Audit Logs to Support Computer Forensics.
ACM Transactions on Information and System Security, 1(3), 1999.

[93] Geoffrey Smith and Dennis Volpano. Secure Information Flow in a Multi-
Threaded Imperative Language. In Conference Record of POPL 98: The
25TH ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, California, pages 355–364, New York, NY, 1998.

[94] A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E. Jones, F. Tchakountio, and
W.T. Strayer S.T. Kent. Hash-Based IP Traceback. In Proceedings of the 2001
ACM SIGCOMM, San Diego, CA, August 2001.

[95] D. X. Song and A. Perrig. Advanced and Authenticated Marking Schemes for
IP Traceback. In Proceedings of the IEEE Infocomm 2001, April 2001.

[96] S. Staniford-Chen and L.T. Heberlein. Holding Intruders Accountable on the
Internet. In Proceedings of the 1995 IEEE Symposium on Security and Privacy,
pages 39–49, Oakland, CA, May 1995.

[97] W.R. Stevens. Advanced Programming in the UNIX Environment. Addison-
Wesley, Reading, MA, 1993.

[98] W.R. Stevens. Unix Network Programming, volume 1. Prentice Hall PTR,
Upper Saddle River, NJ, 1998.

[99] W.R. Stevens. UNIX Network Programming: Interprocess Communications,
volume 2. Prentice Hall PTR, Upper Saddle River, NJ, second edition, 1999.

[100] R. Stone. CenterTrack: An IP Overlay Network for Tracking DoS Floods.
In Proceedings of the 9th USENIX Security Symposium, Denver, CO, August
2000.

[101] Sun Microsystems. SunSHIELD Basic Security Module Guide. http://docs.
sun.com/db/doc/802-5757.

[102] A.M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265,
1937. Reprinted in The Undecidable (Ed. M. David). Hewlett, NY: Raven
Press, 1965.

[103] A.M. Turing. Correction to: On Computable Numbers, with an Application to
the Entscheidungsproblem. Proceedings of the London Mathematical Society,
43:544–546, 1938.

[104] Unix System Manual Pages. Finding files: find(1).

[105] Unix System Manual Pages. make(1): GNU make utility to maintain groups
of programs.

[106] Wietse Venema. TCP WRAPPER, A Tool for Network Monitoring, Ac-
cess Control, and for Setting Up Booby Traps. In Prococeedings of the 1992
USENIX Security Symposium, September 1992.

134

[107] D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Lan-
guage. In Proceedings of The 11th Computer Security Foundations Workshop.
IEEE Computer Society Press, 1998.

[108] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A Sound Type System
for Secure Flow Analysis. Journal of Computer Security, 4(3):167–187, 1996.

[109] Eric W. Weisstein. Bell Number. http://mathworld.wolfram.com/
BellNumber.html.

[110] Christian Wettergren. Runtime Information Flow Analysis and Security:
Licentiate Thesis Proposal. http://www.it.kth.se/~cwe/phd/licprop.ps,
1996.

[111] A. Whitaker, R.S. Cox, and S.D. Gribble. Configuration Debugging as Search:
Finding the Needle in the Haystack. In Proceedings of USENIX OSDI 2004,
December 2004.

[112] A. Whitaker, R.S. Cox, and S.D. Gribble. Using Time Travel to Diagnose
Computer Problems, September 2004.

[113] Edward Wilding. Computer Evidence: A Forensics Investigations Handbook.
Sweet & Maxwell, London, 1997.

[114] S.F. Wu, L. Zhang, D. Massey, and A. Mankin. Intention-Driven ICMP Trace-
Back. IETF Internet draft, February 2001. Work in progress.

[115] Huagang Xie and Philippe Biondi. Linux Intrusion Detection System. http:
//www.lids.org.

[116] A. Yaar, A. Perrig, and D. Song. Pi: A Path Identification Mechanism to
Defend against DDoS Attacks. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2003.

[117] K. Yoda and H. Etoh. Finding a Connection Chain for Tracing Intruders. In
Proceedings of the 6th European Symposium on Research in Computer Security
(ESORICS 2000), October 2000.

[118] Diego Zamboni. Using Internal Sensors for Computer Intrusion Detection.
PhD thesis, Purdue University, 2001. CERIAS TR 2001-42.

[119] Shu Zhang and Partha Dasgupta. Denying Denial of Service Attacks: A Router
Based Solution. In The 2003 International Conference on Internet Computing,
pages 301–307, June 2003.

[120] Y. Zhang and V. Paxson. Detecting Stepping Stones. In Proceedings of the
9th USENIX Security Symposium, Denver, CO, August 2000.

APPENDIX

135

Appendix A: Detailed Performance Results

Table 1
FreeBSD kernel results

Test Mean Std. dev. Min Max

Simple syscall 0.4504 0.0030 0.4453 0.4625

Sig inst. 0.6643 0.0068 0.6590 0.7080

Sig hand. 1.3467 0.0574 1.2860 1.6540

Process fork+exit 129.0783 3.2668 122.4000 137.7073

Process fork+execve 594.1023 10.1764 563.3000 622.6667

Process fork+sh 1176.8880 19.9638 1113.0000 1215.0000

Simple read 1.0437 0.0149 1.0207 1.1109

Simple write 0.9836 0.0397 0.9479 1.2274

Simple stat 2.2547 0.0418 2.1703 2.4678

Simple fstat 0.6598 0.0173 0.6435 0.7232

Simple open/close 3.3546 0.0515 3.2460 3.5216

Select on 500 fd’s 19.8101 0.3660 19.3444 21.4862

Pipe latency 11.2702 0.0838 11.1587 12.0729

AF UNIX latency 12.5225 0.0717 12.3987 12.7805

UDP latency 17.0421 0.1113 15.9089 17.3074

TCP latency 17.8300 0.2080 17.6456 19.5522

File write bandwidth 63576.9450 370.2997 62130.0000 64002.0000

Socket bandwidth 377.8209 21.7406 342.7500 402.5900

AF UNIX bandwidth 617.4526 2.8237 602.8400 621.9300

Pipe bandwidth 1845.4127 13.6448 1756.6700 1874.1400

136

Table 2
Label-0 kernel results

Test Mean Std. dev. Min Max

Simple syscall 0.4499 0.0019 0.4423 0.4666

Sig inst. 0.6666 0.0094 0.6580 0.7540

Sig hand. 1.3404 0.0360 1.2980 1.5310

Process fork+exit 128.3902 2.5452 122.7222 138.3250

Process fork+execve 596.1760 8.2989 570.9474 614.5882

Process fork+sh 1173.6708 17.4250 1119.5000 1198.3000

Simple read 1.1235 0.0336 1.0807 1.2916

Simple write 0.9839 0.0290 0.9469 1.1514

Simple stat 2.2744 0.0547 2.1665 2.5250

Simple fstat 0.6649 0.0201 0.6450 0.7531

Simple open/close 3.4365 0.0960 3.2972 4.0867

Select on 500 fd’s 20.0437 0.3377 19.3631 23.8216

Pipe latency 11.4273 0.2647 11.2593 14.2089

AF UNIX latency 12.6802 0.4095 12.5021 16.1295

UDP latency 17.1144 0.1865 15.1329 17.6448

TCP latency 18.0908 0.4819 15.7554 21.9137

File write bandwidth 63571.9400 373.0444 62303.0000 64002.0000

Socket bandwidth 385.6075 28.4093 324.6300 415.7700

AF UNIX bandwidth 612.9818 4.7987 563.8100 618.4900

Pipe bandwidth 1842.9119 10.5459 1811.4800 1872.4000

137

Table 3
Label-s kernel results

Test Mean Std. dev. Min Max

Simple syscall 0.4498 0.0019 0.4494 0.4682

Sig inst. 0.6650 0.0067 0.6560 0.6880

Sig hand. 1.3364 0.0261 1.3060 1.5540

Process fork+exit 129.1161 2.1423 122.6444 136.9268

Process fork+execve 602.4783 7.6896 576.6000 617.2222

Process fork+sh 1185.3990 17.1613 1118.6000 1212.2000

Simple read 1.2139 0.0394 1.1284 1.3454

Simple write 1.3903 0.0509 1.3116 1.5767

Simple stat 2.2739 0.0783 2.1796 2.5328

Simple fstat 0.6662 0.0209 0.6444 0.7495

Simple open/close 3.4457 0.0744 3.3386 3.7203

Select on 500 fd’s 19.9333 1.6248 19.3259 40.5520

Pipe latency 11.4340 0.0521 11.3264 11.6137

AF UNIX latency 13.5479 0.0720 13.3962 13.8179

UDP latency 18.0801 0.1492 17.7706 18.9459

TCP latency 18.9715 0.2525 16.5678 19.2630

File write bandwidth 63630.4250 326.9002 62478.0000 64002.0000

Socket bandwidth 365.5163 29.6615 320.9600 397.3400

AF UNIX bandwidth 544.0799 13.8608 450.0500 551.4300

Pipe bandwidth 1835.8787 18.6896 1790.7000 1880.0400

138

Table 4
Label-l kernel results

Test Mean Std. dev. Min Max

Simple syscall 0.4501 0.0025 0.4487 0.4683

Sig inst. 0.6658 0.0085 0.6560 0.7300

Sig hand. 1.3393 0.0259 1.2970 1.5390

Process fork+exit 129.1359 2.1143 122.9778 136.3902

Process fork+execve 604.5881 7.8515 577.0000 620.0000

Process fork+sh 1187.9500 17.7554 1122.0000 1223.4000

Simple read 1.3297 0.0492 1.2599 1.4668

Simple write 1.4934 0.0387 1.4354 1.5906

Simple stat 2.3362 0.1001 2.1991 2.5577

Simple fstat 0.6621 0.0145 0.6435 0.7580

Simple open/close 3.4701 0.0978 3.3426 3.7235

Select on 500 fd’s 19.9283 1.4843 19.3408 40.2463

Pipe latency 11.4582 0.2381 11.3235 14.7124

AF UNIX latency 13.5722 0.1859 11.7654 15.0804

UDP latency 18.0479 0.2078 15.6827 18.4821

TCP latency 18.9950 0.2842 16.4914 20.4588

File write bandwidth 63595.2050 339.2577 62478.0000 64002.0000

Socket bandwidth 366.4497 27.7231 324.0000 397.0400

AF UNIX bandwidth 543.9735 9.5682 431.7300 551.9100

Pipe bandwidth 1833.3753 17.3504 1767.1600 1866.7300

VITA

139

VITA

Florian Buchholz was born in Braunschweig, Germany. In 1998 he received a Diplom

in Informatik from the Technische Universität Braunschweig, Germany and in 2000

a Master’s degree in Computer Science from Purdue University in West Lafayette,

Indiana. He earned his Ph.D. in Computer Sciences from Purdue University in 2005.

In the fall of 2005 he will be joining the faculty of the Computer Science Department

at James Madison University in Harrisonburg, Virginia as an Assistant Professor.

