
Write-up of HoneyNet Scan of the Month 24 solution

Florian Buchholz

October 10, 2005

The object of the HoneyNet Scan of the Month #24 challenge is to analyze a recov-
ered floppy from a fictitious drug case. Details can be found at the HoneyNet website (
www.honeynet.org/scans/scan24). This write-up explains how to solve the challenge with
basic Linux tools and a good understanding of the FAT12 file system. This document is
similar to the one I submitted as part of the CERIAS forensics group for the actual challenge
but has additional information about the tools and the file system.

On the challenge website, the image file of the floppy disk is provided. In a real investi-
gation, the image would have to be generated first from the floppy. This can be done with
the dd (disk dump) tool. dd takes an input file or device and an output file or device as
parameters and copies chunks of bytes from the input to the output. There are options to
specify the block size, number of blocks to copy and whether to skip bytes in the input or
output devices. A floppy disk mounted under /dev/floppy can be imaged to the file image
as follows:

dd if=/dev/floppy of=image

This creates a true copy of all the sectors of the floppy in the output file.

1 Initial examination

After downloading the image file, the first step is to verify the file was received correctly.
The website lists an MD5 fingerprint for the zipped image:

image.zip MD5 = b676147f63923e1f428131d59b1d6a72 ( image.zip )

We can compute the MD5 hash sum of the downloaded file with the md5sum command,
which computes the MD5 cryptographic hash value:

> md5sum image.zip

b676147f63923e1f428131d59b1d6a72 image.zip

Having verified that the downloaded file has the same fingerprint we can now unzip the
image file. It is very important to always verify that the image files one works on has not
been modified. Computing and comparing hash values is an accepted way of doing so. If
we had imaged the floppy disk ourselves as described above, we also would have computed
the MD5 hash value of the floppy disk (md5sum /dev/floppy)and compared that to that
of the output file after the imaging.

1



An image file is a true copy of the floppy disk’s data, but as a file it is simply a collection
of bytes. Furthermore, in case we modify the file during the investigation (accidental or
intentionally) we need to make a copy of the image file so as not having to generate a new
image from the floppy again.

As a first step we can try looking at the file system’s view of the floppy image. We could
write the image back to an empty floppy with dd again, but fortunately Linux supports
the mounting of image files directly into the directory tree. This is done with the mount

command and a special device, the loopback device. We also want to specify the read-only
option so that we do not modify the image file.

# mount -o loop,ro image mnt/

Note that we need to have superuser rights to perform the mount (indicated by the # in
the prompt). This mounts the file image under the directory mnt/ and we can access it like
any other directory:

> ll mnt

total 17

-rwxr-xr-x 1 root root 15585 Sep 11 2002 cover page.jpgc

-rwxr-xr-x 1 root root 1000 May 24 2002 schedu~1.exe

It appears that there are two files contained in the image, one might be a JPG file and
the other appears to be a DOS or Windows executable. To find out more about the two
files, we can use the file command. File is a tool that tries to determine the type of a
file by comparing it to a database of well-known headers and keywords. We can even use
the tool to analyze the image file itself:

> file image

image: x86 boot sector, code offset 0x3c, OEM-ID "MSDOS5.0",

root entries 224, sectors 2880 (volumes <=32 MB) , sectors/FAT 9,

serial number 0xc4b1cdcf, unlabeled, FAT (12 bit)

This verifies that the image file is indeed a FAT12 file system and already shows us a few
parameters as we will see below.

> file mnt/cover\ page.jpgc\\ \ \ \ \ \ \ \ \ \

mnt/cover page.jpgc : ERROR: cannot read ‘mnt/cover page.jpgc ’

(Input/output error)

The input/output error indicates that there is something wrong with the file. Also note the
spaces at the end of the “jpgc” suffix (they are escaped by the “\” character by the shell).

> file mnt/schedu~1.exe

mnt/schedu~1.exe: Zip archive data, at least v2.0 to extract

This file seems to be a Zip file, and we can try to uncompress it:

2



> unzip mnt/schedu~1.exe

Archive: mnt/schedu~1.exe

End-of-central-directory signature not found. Either this file is not

a zipfile, or it constitutes one disk of a multi-part archive. In the

latter case the central directory and zipfile comment will be found on

the last disk(s) of this archive.

note: mnt/schedu~1.exe may be a plain executable, not an archive

unzip: cannot find zipfile directory in one of mnt/schedu~1.exe or

mnt/schedu~1.exe.zip, and cannot find mnt/schedu~1.exe.ZIP, period.

Again, there is something wrong with the file. There is nothing further we can do with the
mounted file system, so we need to use other means to continue the investigation.

The strings command prints the printable strings of a certain length of a file. The
default string length is 4. Here is the strings output for the image file for a length of 8 (I
added line-breaks for readability, indicated by “\”):

> strings -n 8 image

MSDOS5.0

NO NAME FAT12 3

NTLDR

Remove disks or other media.

Disk error

Press any key to restart

IMMYJ~1DOC

COVERP~1JPG

SCHEDU~1EXE

Jimmy Jungle

626 Jungle Ave Apt 2

Jungle, NY 11111

Dude, your pot must be the best

it made the cover of High Times Magazine! Thanks for sending me the Cover \

Page. What do you put in your soil when you plant the marijuana seeds? At \

least I know your growing it and not some guy in Columbia.

These kids, they tell me marijuana isn

t addictive, but they don

t stop buying from me. Man, I

m sure glad you told me about targeting the high school students. You must \

havesome experience. It

s like a guaranteed paycheck. Their parents give them money for lunch and \

they spend it on my stuff. I

m an entrepreneur. Am I only one you sell to? Maybe I can become distributor \

ofthe year!

I emailed you the schedule that I am using. I think it helps me cover myself \

and not be predictive. Tell me what you think. To open it, use the same \

password that you sent me before with that file. Talk to you later.

urn:schemas-microsoft-com:office:smarttags

3



urn:schemas-microsoft-com:office:smarttags

urn:schemas-microsoft-com:office:smarttags

urn:schemas-microsoft-com:office:smarttags

urn:schemas-microsoft-com:office:smarttags

urn:schemas-microsoft-com:office:smarttags

PostalCode

Jimmy Jungle

Microsoft Word 10.0

Jimmy Jungle

Microsoft Word Document

MSWordDoc

Word.Document.8

$.’ ",#

(7),01444

’9=82<.342

!22222222222222222222222222222222222222222222222222

%&’()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz

&’()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz

O4p(i$TR

v:I5}61k

pw=goodtimes

Scheduled Visits.xls

\05"s}U7

Scheduled Visits.xlsPK

Simply running strings on the image file already delivered a good amount of information
that we could not retrieve by mounting the image. There seems to be a Microsoft Word
document present in the image, of which we can see much or even all of the text content
already. Other interesting strings are pw=goodtimes, hinting at a password of some sort,
and Scheduled Visits.xls and Scheduled Visits.xlsPK, which hint at the existence of
an Excel file, possibly contained in a PK Zip archive.

2 The FAT12 file system

Before we start a low-level analysis of the image, we need some background information
on FAT12. A detailed description of the FAT on-disk structure can be found at Microsoft:
www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx

The image file can be viewed like any other file with any hex viewer/editor, such as
hexdump or khexedit. The first few bytes look like this:

00000000 eb 3c 90 4d 53 44 4f 53 35 2e 30 00 02 01 01 00 .<.MSDOS5.0.....

00000010 02 e0 00 40 0b f0 09 00 12 00 02 00 00 00 00 00 ...@............

00000020 00 00 00 00 00 00 29 cf cd b1 c4 4e 4f 20 4e 41 ......)....NO NA

00000030 4d 45 20 20 20 20 46 41 54 31 32 20 20 20 33 c9 ME FAT12 3.

00000040 8e d1 bc f0 7b 8e d9 b8 00 20 8e c0 fc bd 00 7c ....{.... .....|

00000050 38 4e 24 7d 24 8b c1 99 e8 3c 01 72 1c 83 eb 3a 8N$}$....<.r...:

4



To interpret the data correctly, we need to know about the FAT12 structure. The addressing
space in FAT12 is divided into four major areas: Boot sector and reserved space, FAT area,
Root directory, and data area.

Boot Sector

1st FAT

...

last FAT

Root Directory

Cluster 2

...

Cluster n

To make a low-level examination of the file system, we need to find out where the
boundaries of the areas are as a byte offset from the start of the data. This is information
that can be calculated using parameters contained in the boot sector as well as constant
values that hold true for all FAT file systems. The structure of the FAT12 boot sector is as
follows:

Jump Addr Name Bytes/Sec S/C Res. Sec

#FATs RootDir Count Sector count Media FAT size # Heads Hidden Sect

Sector count 32 Drv# Res BootSg

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000

0x0010

0x0020

0x0030

Volume ID Volume Label

Sec/Track

FS type

00000000 eb 3c 90 4d 53 44 4f 53 35 2e 30 00 02 01 01 00 .<.MSDOS5.0.....

00000010 02 e0 00 40 0b f0 09 00 12 00 02 00 00 00 00 00 ...@............

00000020 00 00 00 00 00 00 29 cf cd b1 c4 4e 4f 20 4e 41 ......)....NO NA

00000030 4d 45 20 20 20 20 46 41 54 31 32 20 20 20 33 c9 ME FAT12 3.

00000040 8e d1 bc f0 7b 8e d9 b8 00 20 8e c0 fc bd 00 7c ....{.... .....|

00000050 38 4e 24 7d 24 8b c1 99 e8 3c 01 72 1c 83 eb 3a 8N$}$....<.r...:

When interpreting the fields from the boot sector, we need to consider the byte order
of the system that was used to write the data. The byte order can be little endian or big

5



endian, and depend on the processor that is used in the system. Suppose we have one word
(4 bytes) of data that we want to store. Let’s say the number is 287454020, or 0x11223344.
On a little-endian system (e.g. Intel), the lowest byte (0x44) is stored first in memory, then
the next lowest, and so on. Thus the on-disk storage of the word would be 44 33 22 11.
Big-endian systems (e.g. PowerPC), however store the data as humans read it, starting
with the highest byte (0x11), so here the data is stored as 11 22 33 44. FAT12 is always
little-endian.

The important parameters from the file system are thus as follows:

Bytes per sector: 512

Sectors per cluster: 1

Reserved sectors: 1

Number of FATs: 2

Root directory count: 224 (with 32 bytes per entry)

FAT size: 9 sectors

For example, the count of the root directory entries is located in bytes 17 (0xe0) and 18
(0x00). Given that it is a little-endian system we need to reverse the byte order, and the
count is 0x00e0 or 224.

A sector is the smallest unit that can be read from the physical disk (the floppy in
this case). A cluster is the smallest unit that FAT can address. In this case, there is
only one sector per cluster, but for disks with larger capacity the number will be bigger.
This is because FAT12 only has a 12-bit addressing space, which means that it can only
number 212 = 4096 clusters, from 0 to 4095. If a cluster were always the same as a sector,
then the maximum space that can be managed would only be 4096 × 512 = 2097152 bytes
(2MB). With a larger cluster size larger disks can be addressed. Theoretically this goes
up to 510MB, because the sectors per cluster is a one byte field with a value of up to 255.
However, under FAT12 the cluster size is limited to 4 sectors, yielding a limit of 8MB for a
FAT12 partition (the exact number is slightly less, as the first sectors of the file system are
not clusters and we start with Cluster 2).

With the above parameters, we can now determine the boundaries of the file system:
there is only one reserved sector (there can be additional reserved sectors following the boot
sector). Thus the FAT area starts at byte 512 (0x200) of the file system. There are two
FATs (file allocation tables), and each FAT takes up 9 sectors. The root directory therefore
starts at sector 19, or byte address 9728 (0x2600). There are 224 entries of 32 bytes in the
root directory, which means that the directory takes up 7168 bytes (14 sectors). The data
area starting with Cluster 2 starts at sector 33, or byte address 16896 (0x4200). This means
that a Cluster x has sector number 31 + x and a byte address of (31 + x) × 512.

The file allocation table (FAT) is a lookup table that tells the operating system how the
clusters of one file are chained together. If a file is larger than one cluster in size (512 bytes
in this case), additional clusters are allocated to contain the extra data. The directory entry
(see below) for a file only contains the first cluster number. The entries in the FAT are
used to look up subsequent clusters. The FAT is like a large array that contains cluster
numbers. At the n-th FAT entry we can look up the cluster number that follows cluster

6



n in the file. For example, if we have a file of 1200 bytes we need 3 clusters to store the
data. The first two contain the full 512 bytes of data, and the last one only 176 bytes (the
remaining space in the cluster is unused slack space). If the clusters for the file are 2, 8,
and 6 (in that order), then the directory entry for that file would point to Cluster 2, the
FAT entry for Cluster 2 would point to Cluster 8, the FAT entry for Cluster 8 would point
to Cluster 6, and the FAT entry for Cluster 6 would contain an end of file marker (0xfff or
-1 for FAT12). A FAT entry of 0 indicates that the cluster is free for allocation.

In FAT12 each FAT entry has an addressing space of 12 bits. As this is not a power
of 2 and not to waste space, two FAT entries share three bytes of data in the table. To
make matters worse, the three bytes are not split in the middle but the half bytes (a single
hexadecimal number) are assigned as follows: let’s say the first entry of the shared duo
points to Cluster 291 (0x123) and the second to Cluster 1110 (0x456). The three bytes
would then contain the following:

Entry1 Entry2 Byte1 Byte2 Byte3

123 456 => 23 61 45

Conversely, if we have three bytes 0x12, 0x34, and 0x56, then the entries are:

Byte1 Byte2 Byte3 Entry1 Entry2

12 34 56 => 412 563

Note that these are hexadecimal numbers, where a half-byte is exactly one digit and we can
simply append high and low (half-)bytes.

The root directory area simply contains directory entries, in this case 224 of them. Each
directory entry has a size of 32 bytes and has the following format:

Name Attr Res Create time

Create date Access date High cluster Write time Write date Low cluster File size

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000

0x0010

3 Analysis

The root directory entries start at sector 19 (byte address 0x2600). When looking at the
first three entries, we see the following:

00002600 e5 64 00 6f 00 63 00 00 00 ff ff 0f 00 bc ff ff .d.o.c..........

00002610 ff ff ff ff ff ff ff ff ff ff 00 00 ff ff ff ff ................

00002620 e5 4a 00 69 00 6d 00 6d 00 79 00 0f 00 bc 20 00 .J.i.m.m.y.... .

00002630 4a 00 75 00 6e 00 67 00 6c 00 00 00 65 00 2e 00 J.u.n.g.l...e...

00002640 e5 49 4d 4d 59 4a 7e 31 44 4f 43 20 00 68 38 46 .IMMYJ~1DOC .h8F

00002650 2b 2d 2b 2d 00 00 4f 75 8f 2c 02 00 00 50 00 00 +-+-..Ou.,...P..

7



Note that the first two entries do not yield any useful information when interpreting
them as directory entries. This is because they are the long file name entries for the third
entry. Long file name entries are a hack from Microsoft to address the need for file names
that are longer than the standard DOS 8.3 notation. For this purpose, those entries are
marked with the read-only, hidden, system, and volume label flags to “hide” them when
listing the directory with an operating system that cannot interpret long file names. For
our analysis, long file names are not relevant.

3.1 The Word file

The entry starting at byte address 0x2640 contains the directory entry for a file called
“.IMMYJ .DOC”. Note that the first character is a non-printable character with the byte
value of 0xe5. This is a special character in FAT when appearing as the first character of a
file name and it indicates that this file has been deleted. The other important fields for the
reconstruction of the file are the cluster number (in FAT12 only the low cluster number,
which is 16 bits in size, is used) and the file size:

00002640 e5 49 4d 4d 59 4a 7e 31 44 4f 43 20 00 68 38 46 .IMMYJ~1DOC .h8F

00002650 2b 2d 2b 2d 00 00 4f 75 8f 2c 02 00 00 50 00 00 +-+-..Ou.,...P..

The cluster number, bytes 02 00 in little endian, is 2, and the file size, bytes 00 50 00 00,
is 0x5000 (20480) bytes. When looking at the FAT entry for Cluster 2 (starting at byte
515), however, we discover, that it is 0. This is due to the fact that the file has been deleted:

00000200 f0 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00000210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00000220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00000230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2b ...............+

If the file data is located in consecutive clusters, it is still possible to recover the file by
copying out those clusters into a file. The FAT indicates that the next allocated cluster is
Cluster 42 (FAT byte address 0x23f). The file length of 20480 bytes takes up exactly 40
clusters, so the entire file should be recoverable if the file was not fragmented (i.e. the file
data lies in consecutive clusters). We can use dd to copy out the sectors:

> dd bs=512 if=image skip=33 count=40 of=jimmy.doc

40+0 records in

40+0 records out

The bs parameter specifies the block size in bytes, in this case we set one block to the size
of a sector. With skip we skip ahead to sector 33, where Cluster 2 is located, and with
count we copy 40 sectors/clusters.

> file jimmy.doc

jimmy.doc: Microsoft Office Document

The file command recognizes the file as a valid Word document, and we can view the file
with an office program.

8



3.2 The JPG file

The next entry in the root directory looks as follows (ignoring long file name entries again):

000026a0 43 4f 56 45 52 50 7e 31 4a 50 47 20 00 6d 4d 46 COVERP~1JPG .mMF

000026b0 2b 2d 2b 2d 00 00 da 43 2b 2d a4 01 e1 3c 00 00 +-+-...C+-...<..

The file name is complete this time, indicating that the file has not been deleted. We have
a starting cluster number of 0x01a4 (420) and a file size of 0x3ce1 (15585) bytes. Looking
at the FAT entry for Cluster 420 (starting at byte 0x318), we again see that it is zero:

00000300 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00000310 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00000320 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00000330 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00000340 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00000350 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

The file was not marked as deleted in the directory entry, so now we should look at Clus-
ter 420:

00038600 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 ................

00038610 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 ................

00038620 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 ................

00038630 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 ................

00038640 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 ................

00038650 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 f6 ................

There is certainly no usable data here, and as a matter of fact, the entire remainder of the
disk image from Sector 109 on is filled with 0xf6 characters. The file name extension of
“JPG” indicates that the file is a JPG file. JPG files all start with a header that contains
(among other things) the string “JFIF.” Searching the image for this string with khexedit

revealed that the string was found starting at byte 0x9206. This is in Cluster 42, the cluster
right after the Word document. The FAT entry for Cluster 42 starts at byte 0x23f and is
the following:

00000230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2b ...............+

00000240 c0 02 2d e0 02 2f 00 03 31 20 03 33 40 03 35 60 ..-../..1 .3@.5‘

00000250 03 37 80 03 39 a0 03 3b c0 03 3d e0 03 3f 00 04 .7..9..;..=..?..

00000260 41 20 04 43 40 04 45 60 04 47 80 04 ff af 04 4b A .C@.E‘.G.....K

The value is 43 (0x2b), and the FAT entry for Cluster 43 is 44. We can follow the FAT
entry chain of consecutive clusters all the way to Cluster 72 (starting at byte 0x26c), where
we find an entry of 0xfff (-1) indicating the end of the file. The file thus takes up 31 clusters
(15872 bytes), which is consistent with the file length of 15585. This means that 287 bytes
of Cluster 72 are slack space. Looking at the end of Cluster 72, we find:

9



0000ced0 a2 8a 00 28 a2 8a 00 28 a2 8a 00 28 a2 8a 00 ff ...(...(...(....

0000cee0 d9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0000cef0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0000cf00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0000cf10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0000cf20 70 77 3d 67 6f 6f 64 74 69 6d 65 73 00 00 00 00 pw=goodtimes....

0000cf30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

The slack space was used to store data that is not part of the file, probably some sort of
password. To extract the image, we can use dd again:

> dd bs=512 if=image skip=73 count=31 of=cover.jpg

31+0 records in

31+0 records out

> file cover.jpg

cover.jpg: JPEG image data, JFIF standard 1.01

The extracted image looks like this:

3.3 The Zip file

The last entry in the root directory is the following:

00002700 53 43 48 45 44 55 7e 31 45 58 45 20 00 53 53 46 SCHEDU~1EXE .SSF

00002710 2b 2d 2b 2d 00 00 90 42 b8 2c 49 00 e8 03 00 00 +-+-...B.,I.....

The file is not deleted, the start cluster number is 73 (0x49), and the file size is 1000 (0x03e8)
bytes. Looking at the FAT entries for the file, we have:

00000260 41 20 04 43 40 04 45 60 04 47 80 04 ff af 04 4b A .C@.E‘.G.....K

00000270 c0 04 4d f0 ff 00 00 00 00 00 00 00 00 00 00 00 ..M.............

This is a consecutive chain of cluster from Cluster 73 to Cluster 77 (0x4d). The reported
length of the file is 1000 bytes, but the FAT entries show that it takes up 5 clusters (up
to 2560 bytes). When examining the data clusters, it also becomes clear that the data
continues beyond Cluster 74. Again, we copy out the data:

10



> dd bs=512 if=image skip=104 count=5 of=schedule.exe

5+0 records in

5+0 records out

> file schedule.exe

schedule.exe: Zip archive data, at least v2.0 to extract

When unzipping the file with unzip, we are prompted for a password. When entering
“goodtimes” the file is extracted:

> unzip schedule.exe

Archive: schedule.exe

[schedule.exe] Scheduled Visits.xls password:

inflating: Scheduled Visits.xls

> file Scheduled\ Visits.xls

Scheduled Visits.xls: Microsoft Office Document

The unzipped file “Scheduled Visits.xls” is an Excel file that contains information that
can be used to answer one of the HoneyNet challenge questions.

4 Repairing the file system

The modifications that were done to each file to prevent access were effective yet simple:
the Word document was deleted, the JPG file had the wrong start cluster in its directory
entry (420 instead of 42), and the Zip file had an incorrect file length in its directory entry
(1000 instead of 2560).

We can “repair” the file system by reconstructing the FAT entries for the Word file and
putting back the proper values into the directory entries:

00000200 f0 ff ff 03 40 00 05 60 00 07 80 00 09 a0 00 0b ....@..‘........

00000210 c0 00 0d e0 00 0f 00 01 11 20 01 13 40 01 15 60 ......... ..@..‘

00000220 01 17 80 01 19 a0 01 1b c0 01 1d e0 01 1f 00 02 ................

00000230 21 20 02 23 40 02 25 60 02 27 80 02 29 f0 ff 2b ! .#@.%‘.’..)..+

00002640 4a 49 4d 4d 59 4a 7e 31 44 4f 43 20 00 68 38 46 JIMMYJ~1DOC .h8F

00002650 2b 2d 2b 2d 00 00 4f 75 8f 2c 02 00 00 50 00 00 +-+-..Ou.,...P..

000026a0 43 4f 56 45 52 50 7e 31 4a 50 47 20 00 6d 4d 46 COVERP~1JPG .mMF

000026b0 2b 2d 2b 2d 00 00 da 43 2b 2d 2a 00 e1 3c 00 00 +-+-...C+-*./=..

00002700 53 43 48 45 44 55 7e 31 5a 49 50 20 00 53 53 46 SCHEDU~1ZIP .SSF

00002710 2b 2d 2b 2d 00 00 90 42 b8 2c 49 00 70 09 00 00 +-+-...B.,I.p...

The changes can be made in a hex editor such as khexedit and then saved. We can now
mount the file system again and observe the file output:

11



# mount -o loop,ro repaired_image mnt/

> ll mnt/

total 38

-rwxr-xr-x 1 root root 15585 Sep 11 2002 cover page.jpgc

-rwxr-xr-x 1 root root 20480 Apr 15 2002 jimmyj~1.doc

-rwxr-xr-x 1 root root 2416 May 24 2002 schedu~1.exe

> file mnt/*

mnt/cover page.jpgc : JPEG image data, JFIF standard 1.01

mnt/jimmyj~1.doc: Microsoft Office Document

mnt/schedu~1.exe: Zip archive data, at least v2.0 to extract

12


