Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/AMS/Regular/Main.js

Coordinate Systems for \mathbb{R}^{3}
An Introduction
|
Prof. David Bernstein
James Madison University
|
|
Computer Science Department |
bernstdh@jmu.edu |
|
Rectangular/Cartesian Coordinates
- Reference Frames:
- An origin
- A basis (i.e., three linearly independent vectors)
- Directional conventions
- Quantities:
- Three linear (i.e., length) coordinates
- Visualization:
Cylindrical Coordinates
- Quantities:
- Polar coordinates in one plane (i.e., one angular and
one linear coordinate)
- Linear third coordinate
- Visualization:
Converting between Cylindrical and Cartesian
Notation
Converting from Cylindrical to Cartesian
- What We Know:
- Using the Right Triangle:
- \cos \theta = p_{1} / d so
p_{1} = d \cos \theta
- \sin \theta = p_{2} / d so
p_{2} = d \sin \theta
- p_{3} = h
Converting from Cartesian to Cylindrical
- What We Know:
- Using the Right Triangle:
- \tan \theta = p_{2} / p_{1} for p_{1} \gt 0
so \theta = \tan^{-1} p_{2} / p_{1}
- Using the Norm:
- d = \sqrt{p_{1}^{2} + p_{2}^{2}}
- By Definition:
Spherical Coordinates
- Quantities:
- Two angular coordinates
- One linear coordinate
- Visualization:
Converting between Spherical and Cartesian Coordinates
Notation
Converting from Spherical to Cartesian
- What We Know:
- Finding d:
- \sin \mu = d / r so
d = r \sin \mu
- Finding p:
- \cos \theta = p_{1} / d so
p_{1} = d \cos \theta = r \sin \mu \cos \theta
- \sin \theta = p_{2} / d so
p_{2} = d \sin \theta = r \sin \mu \sin \theta
- \cos \mu = p_{3} / r so
p_{3} = r \cos \mu
Converting from Cartesian to Spherical
- What We Know:
- Finding d:
- d = \sqrt{p_{1}^{2} + p_{2}^{2}}
- Finding r:
- r = ||\bs{p}|| = \sqrt{p_1^2 + p_2^2 + p_3^2}
- Using the Right Triangles:
- \tan \theta = p_{2} / p_{1}
so \theta = \tan^{-1} p_{2}/p_{1}
- \cos \mu = p_{3} / r
so \mu = \cos^{-1} \frac{p_{3}}{||\bs{p}||}
() [] {}