Ray-Triangle Intersection (cont.)
- Simplifying:
- Letting \(\rho = 1 - \sigma - \tau\)
\(\bs{p}(\sigma, \tau) = \bs{r} +
\sigma (\bs{s} - \bs{r}) + \tau (\bs{t} - \bs{r})\)
- Intersection of the Ray and the Plane:
- Substituting the parametric form of the ray,
\(\bs{o} + t \bs{d}\), for \(\bs{p}\) yields:
\(\bs{o} + t \bs{d} = \bs{r} +
\sigma (\bs{s} - \bs{r}) + \tau (\bs{t} - \bs{r})\)
- Using the Paramters:
- The point is in the interior if and only if
\(\sigma > 0\), \(\tau > 0\), and
\((\sigma + \tau) \lt 1\)