An Approach for Solving Javall Object Persistence
Issuesusing RDBM S and other Data Sour ces

Adomas Svirskas!?, Jurgita Sakal auskaite?

1SAP Systems Integration AG, Business Software Products
D-71691 Freiberg am Neckar, Germany
adomas. svi r skas@ap. com
1 Department of Computer Science, Faaulty of Mathematics and Informatics, Vilnius
University
LT2600 Vilnius, Lithuania
{adonms. svirskas, jurgita.sakal auskaite}@raf.vu.lt

Abstract. This paper summarizes experience gained designing, developing,
reusing and refining Javall based persistence framework. Authors describe
their approach for abstrading operations with data sources under Java
interfaces. The paper discusses isales of objed-relational mapping issues and
presents a solution. The key dedsions as conredion management,
independence from database structure, mass instantiation d persistent objeds
using objed fadories and load balancing are discussd. A short review of the
related work in this areais provided.

1 Introduction

Perhaps one of the most important issues for many applicaions is convenient access
to external data sources. Historicdly, the most common data source type is relational
database, but there is considerable variety of other types of data sources, which are
quite different in terms how datais gored and accessed. There ae two main problem
aress — the manipulation of the eisting data, and the persistence of the run-time
objeds. These aess are often tightly coupled —tables in relational database ae often
used to store gplication entities and, on the other hand, some run-time entities are
stored in a different kind of external storage - Lightweight Diredory Access Protocol
(LDAP) server, for example. Since there is a grea ded of interadion with database,
both for objed persistence and data acces there is a need for the cnvenient
persistence framework, abstrad enough to be reusable independently of the particular
application logic and the external data source type. This framework should provide
interfaces to oltain a cwnnedion to a data store, creae, retrieve, update and delete
persistent entities. Implementation of this interface should also be independent of
changes in the database layout.

We have designed persistence frameworks in Javall and in CORBAO and
implemented them on top d JDBC - relational database middleware of choice for our
applicaions. These frameworks are &le to encgpsulate data source-dependent
implementation urder uniform interface Later we expanded the implementation of

our framework by adding classes for an interadion with LDAP services and we have
plans to implement access to the XML -based storage using the same interface

This paper is organized as follows. Sedion 2 identifies the main issues and reasons,
which caused our framework development effort; Sedtion 3 describes design and
implementation in detail; Sedion 4 is dedicated for brief overview of related work;
and Sedion 5 provides concluding remarks.

Usage of the relational database metadata dlowed us to develop implementation,
which isindependent of RDBMS table structure. The Fadory pattern is used to oktain
the results of the queries against the databases. The set of applicaion objeds is
produced based on SQL or other type of (LDAP, for example) queries. Thereisalso a
posshility to spedfy a set of the so-cdled data sinks for afadory. We can define data
sink as an objed, which is able to consume and process a single data item from the
query result set. Each sink class implements uniform interfaceand encgpsulates the
logic of the data item conversion to some dternative representation. Sink is supplied
with the data transformation objed, which is in charge of the adua further
presentation of the data. Thus, an item of the query result set can be passd to the
array of sinksand direded to dfferent destinations, if necessary.

Figure 1 shows part of UML class diagram of our persistence framework. We dso
use very simple mnnedion poding mechanism, which allows more dficient usage of
database mnnedions. Modern application servers provide mnnedion poding, some
JDBC 2.0 drivers (e.g. Orade) provide mnnedion poding at drivel level. In these
cases, of course, one should use one of the mentioned mechanisms. Our simple
poding technique can be useful in other situations when there is no application server
or JDBC driver suppart.

2 Theissues

2.1 High-level functional requirements

It was our opinion that the following issues were aucial to ded with: uniform
interfaces as much independent from data store type & possble (JDBC, LDAP and
some other interfaces, such as Informix ealy-times proprietary Javall Objed
Interface were important to ded with); data store @nnedion management —
establishment, closing, transadions; persistent objed lifecycle — credion, read, update
and delete (CRUD) operations; mass credion objeds from data stores usage of them
or their attributes (e.g. search operations). Load balancing of database operations in
distributed oljed environments emerged as an important task alittl e later.

2.2 Data sourcerelated issues

Degpite the fad that the framework has been designed with the independence from
data store type in mind, JDBC-compliant data stores cgptured the most of attention
and efforts. While JDBC itself is quite mnvenient and simple set of interfaces, the
adua implementations tend to deviate from the standard by providing proprietary

extensions in some ca&es or postponing certain important implementations (e.g.
metadata) until better times. This led to quite aumbersome task of balancing between
temptations to use the proprietary vendor extensions and the cmplexity of
encgpsulating little differences into our own abstradions. Particular areas of concern
were: metadata (as mentioned ealier) and mappings of SQL data types to JDBC data
types, processng of BLOB/CLOB data, unique incremental ID’s. It was difficult to
isolate our development efforts from vendor-spedfic dedsions because of the fad that
JDBC drivers from different vendors were not at the same stage of maturity, we had
projed-related priorities, etc. Our first JDBC-compliant DBMS was Informix
Universal Server, thus many implementation dedsions were influenced by this fad.
The goodthing was that sincethe beginning of our development we were exposed to
the variety of JDBC drivers — we used two dfferent implementations. we used one
from Weblogic a first and switched to native Informix driver later. This diversity
made us aware of the differences in JDBC URL’s and ather subtle differences. This
laid out a good reusabili ty foundation and, despite mnsiderable bias to Informix side,
making the framework Orade-ready was manageable and proved basic validity of our
design dedsions.

«interface
0..* DBConnecti

0.* -
’7Connect|onManaJ7+connect
f1-+closeConnectio

«interface DBConnectionlinitial i
PersistentOhjj +getConnectio :f&{g?cl}(
+save(+getNativeConnegti
+retrieve
+delete ‘

JDBCConnecfti 0..1

«interface = 0..*
DBObjectInter

4
+getColumnValy 1.%

o

+getConnectionTy

NativeConnegti 1 LDAPDBConnec¢t

+setColumnVal 1>

+getDBTableNg 1 JDBCTab DB«Ci)r:]ljeergatFc‘éeact

«interface +createDBObjec
LDAPObijectinteyf +getColum| 0-* +setMaxRequItsToR ot
+setModifie 0.%
+modifylt «interface N
JDBCObjectinte
+assignColumnV. JDBCObjectFactor

LDAPODbjectinterface 0.* 1.
0..*

JDBCObjectinterface 0.*\3pBCColu 0.*

1

0%l . I:DAPObjectFactor

+toString
o JDBCMetaD

«interface +getTableInf
Connectab +getColumnSetin

+setConnectio
+getConnectio
+supportsConnection[T

Fig. 1. UML classdiagram of objed persistence framework described in this paper

On the other hand, the dedsion to use auniform set of interfaces for JDBC and
non-JDBC data stores proved itself, there were no big problems despite the fad that
LDAP, for example, and JDBC are quite different in nature. The big advantage was
unified procedure of mass credion of objeds from these types of data stores by using
the factory pattern. Each type of fadories differed form ead other in terms of
spedfying seach criteria, but the procedure of obtaining results was identicd. LDAP
implementation also provided the same suppat for CRUD operations as the one of
JDBC.

3 Proposed solutions

One of the main tasks was to find the right level and granularity of abstradions for
our persistence framework. We needed to shield ourselves from tedious task of
deding with urderlying storage system details, yet we kept in mind simplicity and
efficiency. All our abstradions fall into these main caegories. connedion
management, persistent business objeds, objed fadories. Below we describe our
design dedsions and explain usage of our framework.

3.1 Connection management

Before doing anything else with a data store, an applicaion must establish a
connedion to it. This adion is quite tedious becaise it is time @nsuming, resource
intensive and depends on a set of parameters such as network address port, data store
name, etc., which should be spedfied in storage-type and vendor dependent form (e.g.
JDBC URL). That said, it is clea that one would like to encapsulate mnnedion
handling into reusable components for the wnvenience of data store related
applications.

We have introduced the ConnectionManager class which is responsible for
creding a data store connedion. This class has the only method getConnection, which
cregdes a nnedion based on the information contained in its parameter of
DBConnectionlnitializer type. The method mentioned above aranges connedion
related properties into the right sequence and format depending on the underlying data
storage mechanism. For example, JIDBC URL'’s for different types of databases have
different format, LDAP does not have URL at all, etc.

The result of an invocation of the getConnection method is an instance of the
DBConnection type. The main dedsions to introduce this interfacewere the neel to
have uniform interface for different types of connedions and the idea to have a
connedion, which would re-bind itself to the data store in case of connedion loss
(network-related errors, restart of data store manager, etc.). The interface mentioned
above provides methods to establish a cnnedion, close it and begin/end transadions.
Of course, it was not our goal to mimic dl methods from all possble mnnedion types
in our interfface in our DBConnection interfface so we introduced the
getNativeConnection method to get accessto the underlying data store @mnnedion.
Applicaions can use this feaure when necessary, however, in this case they are
responsible for handling connedion-related exceptions.

It is our opinion that our data store mnnedion establishment approach is quite
simple and flexible — it is encgpsulated in the ConnectionManager, which knows how
to get obtain the particular connedion. The rest of applicaion is shielded from these
detail s. When we introduced our framework, most connections to JDBC data sources
were obtained dredly via JDBC DriverManager. Currently the more common caseis
to oltain these mnnedions from applicaion server via JNDI, which is completely
transparent to clients of our framework. It takes only to introduce anew set of
properties for DBConnectionlnitializer and add the proper handling for the new type
of connedion.

One more important asped of connedion management is connedion poding, i.e.
maintaining a number of open connedions to data source instantiating them on
demand, closing after some inadivity period, etc. We have introduced a very simple
connedion poding class DBConnectionPool, which is cgpable to maintain a pod of
connedions for data sources without other poding mechanisms. Currently data source
connedion poding has become astandard feaure of most application servers or even
JDBC drivers (e.g. latest Orade JDBC drivers), therefore our poding medhanism is
not used heavily.

The particular implementations of DBConnection interface @ae JDBCConnection
LDAPDBConnection classes. They dightly differ from each other in operation set -
authentication is a separate method in LDAPDBConnection, for example, LDAP
connedion does not suppartt transadions, etc. The general was to placeonly the most
common operations into the generic interface and leave spedfic features to the
particular implementations.

One last conredionrelated feaure of our framework to mention is the
Connectable interface which alows stting, obtaining and verifying the type of
suppated connedion. All classes, which implement this interface can accept
DBConnection from outside, so they are independent from particular connedion and
do not need to establish it themselves.

3.2 Persistent objects and operationswith these objects

Connedion management is very important asped of any persistence framework,
however it is only supparting functionality. The main task is to cope with so cdled
"impedance mismatch" between the database axd oljed-oriented applicaion. While
most developers gill need to know and understand SQL, use it for many different
tasks, the goal is to eliminate routine database operations for typicd persistence needs
and to provide objed-relational mapping between objeds and relational database.

First of all, it is necessary to ded with the lifecycle of an object — creaion, reading,
update, and delete (CRUD) operations. Our approach was to introduce the
PersistentObject interface which defines al the operations, mentioned above. Thisis
too generic, however, for red objed-relationa or other storage mappings, so there ae
more spedfic interfaces DBObjectinterface and JDBCObjectinterface, suited for
RDBMS spedfic mappings.

The main design ideabehind the mapping solutions of our framework was to make
these mapping as independent from changes in database structures, as reasonably
possble. Client applicaions $oud be @le to access objed data via get/set type

methods using column names. This is reasonable, becaise the dient still neels to
know the semantics of table structure, i.e. what applicaion-domain meaning has a
column. The technicd details like anversion from SQL and JDBC types to regular
Javall, deding with ResultSet objeds, etc. is up to the framework. Let us discuss in
greder detail how thisgoal is achieved.

We dedded to make our persistent objeds appli cation-oriented, as explained in the
previous paragraph, but database-driven. This means that persistent objed is
constructed providing database table name and there is mechanism to obktain structure
of the table in order to establish set of attributes for the objed. Mechanism of
obtaining table structure is built on having the JDBCMetaData class which is
responsible for providing the metadata (names and types of columns) for persistent
objeds. Metadata is caded on per-table basis, so there isno need to extrad it multiple
times. Of course, this makes our framework vulnerable to data structure changes, it is
necessary to restart the gplication if structure of tables changes. Obtaining metadata
is ©mewhat tricky, it was mentioned ealier that some JDBC drivers did not
implement this part of the JDBC Standard readily. This leads to the usage of vendor-
dependent information such as system tables and data type cdes and it is not very
elegant solution. Nevertheless this approach worked for us when deding with
Informix and Orade, thus, it is feasible to get metadata even using incomplete JDBC
implementations.

Another important part besides attribute-like accssto data fields is generating of
SQL statements for CRUD operations. This kind o functionality has been
encgpsulated into the default implementation of the JDBCODbjectinterface — the
JDBCObjectinterfaceBase class Normally these statements are used inside the
implementation of the latter class, but there is a posshility to get them for
troubleshoating and debugging purposes.

The de snippet below shows how easy is to instantiate and save anew objed.
There is no need at all to worry about SQL statements and keeping them up-to-date
when the structure of a table changes. The method save of the PersistentObject
interfaceautomaticdly resultsin SQL INSERT statement the first time objed is saved
and SQL UPDATE statement each time dterwards. It is also pcsdble to delete
desired objed using delete method a revert to the database image using retrieve
method.

Hasht abl e col _i nfo = dbFactory. get Met aDat al nf o(" cust omer agent ") ;
JDBCOhj ect | nterfaceBase dbobj = new

JDBCnhj ect | nt er faceBase(" cust oneragent”, col _info, true, false);
dbobj . set Connecti on(dbFact ory. get Connection(), true);

dbobj . set Col umVal ue("cust _i d*, new Bi gDeci mal (cid));

dbobj . set Col umVal ue("agnt _i d*, new Bi gDeci mal (agi d));

dbobj . set Col umVal ue("approved_tf", agent.isPrivate() ? "F'" : "T");

dbobj . save();

An important thing not visible in this code example is unique ID of a persistent
objed. There ae different posdbilities to generate this “magic” number. It is posgble
to use SQL SELECT to get the maximum value of the primary key, increment it and
use & the ID of the new objed. This approach is not the best, however — it takes
additional database accssto oltain the maximum value, it depends on the isolation
level of an applicdion, etc. Ancther approacd isto use vendor spedfic data types (e.g.
SERIAL of Informix) and leare this function to a DBMS. This approac is even
worse, since it leads to vendor lock-in, as these automatic counter types are non-
standard. We do not claim that it is always the best pradice to avoid vendor
extensions, in some caes it is inevitable, but in this case there is more efficient,
elegant and partable solution. We took quite ammon approach to generate unique ID
as a function of timer and some random number. This results in 19 byte-length
numbers, which contains yea, ordinal number of the day, hour-to-millisecond and
threedigit random number. It is kept as gring in database table. While this is by no
means ided algorithm, it served us well in many projeds. There ae recommendations
to use 16 hytes for this purpase and to have two parts for an ID: so-called fadory
number and 1D number (similar to the gproad taken by manufadurers of network
interface cads). Skeptics can point out that these gproaches waste space but
somebody was very considerate @out space yeas ago, which resulted in Y2K
problem. It is our opinion that our approach has a useful feaure of keeping track of
the time of table entry credion.

Another implementation of persistent objeds is based on LDAP services. It is
much more simple and straightforward, mainly becaise LDAP repository is objed-
oriented itself. Therefore, the LDAPODbjectinterface and its default implementation,
the LDAPQODbjectinterfaceBase do not require complex manipulations with metadata,
etc. ldentificaion of an entity is not a problem, since it is open and explicit — every
LDAP entry must have its distinguished name — DN. Operations with LDAP-based
persistent objeds mainly differ from those with JDBC in the way updates are done. In
LDAP cese there ae cetain rules how to prepare dtribute changes, but these things
are quite straightforward. The main benefit of having LDAP implementation of the
interfaces mentioned above is the possibili ty to work using the same astradions with
objeds of different nature. Thisis espedally true when mass creaion of objeds from
data store takes place becaise instantiation of a single LDAP-based persistent objed
is quite different from the JDBC:

LDAP(hj ect | nt er f aceBase principal =

new LDAPOhj ect I nt erfaceBase (new netscape. | dap. LDAPEntry(dn));
princi pal . set Connecti on(l dapFact ory. get Connection(), true);
net scape. | dap. LDAPModi fi cati onSet nobds = new

net scape. | dap. LDAPMbdi fi cationSet ();

net scape. | dap. LDAPAttri bute attr = new
net scape. | dap. LDAPAttri bute("userpassword", password);
nmods. add(net scape. | dap. LDAPMbdi fi cati on. REPLACE, attr);

principal.nodifylt (nods);

3.3 Object factories and processing modes of persistent objects

It is very common situation when applicaion neals to retrieve series of objeds based
on some @plicaiondependent criteria. These aiteria can be SQL SELECT
statements, LDAP queries, XML XPath expressions, etc. For the cnvenience ad
simplicity of this kind of operations we introduced quite intuitive objea fadory
interfaces. Implementations of these interfaces take cae of performing necessary
interadions with underlying data store mechanisms and instantiating persistence-
cgoable objeds. Let us examine these interfaces more dosely.

DBObjectFactory interface (it extends Connectable) is the main interface which
defines fadory-type operations of our framework. There ae severa methods
createDBObjects, which are used most frequently when thereis a need to retrieve data
items and produce DBObjectinterface type objeds. It is passble to spedfy the
maximum number of objeds to be creded and the number data items to be skipped.
The latter feaure is useful when it is necessary to deliver results of a query in portions
(e.g. multi-page seach).

Vect or productList = dbFactory. creat eDBObj ects
("Select * from product where cust_id = "+cust_ID,

pr odsPer Page, (i Page) * pr odsPer Page) ;

The mde snippet above ill ustrates most straightforward use of objed fadory. A
vedor of creaed adbjeds is returned to the dient application and it is up to the
application to processthese objeds. This enario is not aways the best, however.
Sometimes retrieved dataitems sould be immediately processed, before or in parall el
with the retrieval of subsequent data items, which satisfy the retrieval criteria. A good
example is an application, which delivers full-text seach results via WWW. The end
user would be much more delighted if they could seethe first results of their seach as
soon as they are retrieved, rather than wait for the query to end before sedng
anything. Another example would be aneeal to dred retrieved data items to multiple
destinations simultaneoudly. These functions would not be passble using the example
above.

In order to fadlitate the functionality described above, we have introduced a
posshility to attach an arbitrary number of data mnsumers to the DBObjectFactory
objed dynamically. The DBFactoryResultSnk interface is cgoable to consume
retrieved data items, as its name suggests. Instances of the dasses, which implement

this interface can be alded to the DBObjectFactory via addResultSink method. It is
aso passhle to delete dl or a particular sink from a fadory, and spedfy a set of
alowed sink types — classes implementing the DBFactoryResultSnk interface

When data item is retrieved by DBObjectFactory implementation from data store,
it is passed to all registered sinks by invoking their acceptDataltem method:

publ i c bool ean accept Dataltem (DBObj ect | nterface DBObj ect,

Bool ean flLastltenm) throws DataProcessi ngExcepti on;

Thus data sink gets control and can processthe objed, which is passd. It is up to
data sink implementation to define further semantics of processng. Our current
implementations of data sinks are synchronous, i.e. objed fadory waits for the
completion of data objed procesgng, but nothing prevents a sink from initiating an
asynchronous adion and returning control to the fadory.

The users of WWW based seach/retrieval system were satisfied when the results
of their queries darted to appea on the browser screen sooner than all results of the
query were processd.

3.4 Instantiation of the persistent objects

Having explained the anatomy of DBObjectFactory in general, we aan take a ¢oser
look at the process of credion of these objeds. Here is the place where
implementations beaome data store type dependent. RDBM S-related implementation
deserves the most attention, sinceit is most commonly used and more cmplex. So we
in the first placewe will discuss the design and implementation solutions of JDBC-
based JDBCObjectFactoryBase class

There ae two main posshilities to retrieve data items from RDBMS: to spedfy an
arbitrary SQL SELECT statement or to spedfy a table name and, most likely, a
WHERE clause. The latter scenario is the speda case of the former, however, we
dedded to abstrad it into separate overloaded method. This dedsion has been madein
order to provide more mnvenient interfacefor single-table retrievals and to be ale to
distinguish between read-only and updateable retrievals. In any case, one of the main
goals is independence from DBMS table structure or SQL SELECT statement during
objed instantiation and retrieval of column values, as it was the cae designing
persistence suppart for individual objeds.

This independenceis achieved again through the usage of metadata (column names
and datatypes) in both cases. In case of arbitrary SQL seled statement the metadatais
extraded from JDBC ResultSet, in case of single-table retrieve, the metadata is
extraded from a database. The metadata information is encgpsulated into an instance
of JDBCMetaData class. Extradion of metadata for the same table is done once and
then the metadata is cached in an instance of JDBCMetaData. This information is
shared between objea fadories and individual objed persistence mechanism.
Metadata for ead table is gored as a wlledion of instances of the JDBCColumn
class This class provides a posshility to customize processng of individual columns
by spedfying flags read-only, not null, hidden, etc.

Sometimes it is desirable to have more businessspedfic object classas a basis for
persistent operations. It is possible to do using aggregation, i.e. having
PersistentObject type objed inside the business objed, however we provide the
NamedDBObjectFactory class which has setDBObjectClass method to spedfy the
classof business objeds to be creded from data items. A class passed as a parameter
of the method, mentioned above, must extend DefaultNamedJDBCObject class By
using this feature it is posdble to have ahierarchy of applicaion-spedfic persistent
objeds.

3.5 De-coupled database oper ations

Another important persistence-related issue is where to concentrate the processng
adivities of database interadions, since they mostly are resource hungry. Sometimes
it is highly desirable to have aposshility to relocae database processng to another
physicd machine(s) when the workload grows.

«interface»
GenericObject
‘ +putNativeObject()
dinterface oethitiveObject)
DBOperable
+setup()
+addSQLStaterment()
+getSQLStaterments()
+setDBAction() «interface»
+getDBAction() | QueueManager
+setDefaultQueue() +createQue
0.* |+addTransactionMember()| [0.* +getQJeueBL§.lslane() .
+getTransactionMembers() +gelQueueByNameAndType()| | «interface»
+executeTransaction() DBQueryProcessor|
+setWaitingForResullts() 1 +start()
+HsWaitingForResuits() « |+stop()
+pushResults() 0- +setQueueName()
0.*
*
«interface» 0.
ObjectQueue
+utObject()
_ +putHighPriorityObject()
«interface» +getObject()
Persistent 0% [+indexOi() 0
+save() " |+getOnjectCount() N
+Oelete() +getQueueName()
+etrieve() +getQueueType()

Fig. 2. UML diagram of de-couped database operations framework comporents

We have designed the distributed framework based on the producer-
consumer pattern, which uses queue-based mechanism to separate the producers and
the @mnsumers. The main aim is to encapsulate the processng of all forms of database
operations— SELECT, UPDATE, DELETE statements, etc. Two essential parts of the
implementation are:

« CORBA objed implementing spedfic interface (DBOperable), which contains
information needed for exeauting of the database operations — query or other SQL
statement to be executed, what results are to be returned, etc.

« CORBA objed (DBQueryProcessor), which has the cnnedion to the database and
can processobjeds implementing interfacementioned above.

The main goal is load balancing and the optima usage of the system processng
power — it is possble to plug additional madiines running instances of
DBQueryProcessor, they would connect to Queue Manager, obtain ObjectQueue
name and would participate in the query or, to be more exad, database operations
processng adivity. Upon completion of database operation, DB processor returns
results to the dient component via cdl bad interface

Objed queue solution provides two different communication options:

« Communication via simple data structures — client just puts other objeds or itself
into a queue, and procesor of database operations (DBQueryProcessor) gets
them from it. Objed queue has a passhility to accet objeds only of spedfic
type, process objeds with different priorities, etc. DBQueryProcessor also can
choose queue of spedfic type.

e Communication via excgpsulated CORBA Event Service DBQueryProcessor
objeds register as pull consumers; some objeds can register as push suppliers for
the spedfic event channel. One queue an have multiple Event Service dannels.
The implementation of the queue encapsulates the aedion of the dannels, etc.
and expases comprehensive interfacefor the dients.

In both cases, the objed to be processed can initiate the database operation. This
can aso be done by any other objed, which would put an objed, implementing
DBOperable into the particular queue.

«interface»

~ QueueManager,
QFM JE .
(?\ M
ject(—> 4
«interface» PuChiect) «interface» «interface»
GenericObject ObjectQueue DBQueryProcessor|

4-getObject()

Fig. 3. UML collaboration dagram of communicaion wsing queues

4 Related work

There ae many different approaches to dbjed persistence axd oljed-relational
mapping problems ranging from implementations smilar to ours to heavry and
expensive products. We ae keguing an eye on the developments in this areafor two
purposes — comparing work of othersto our ideas and experiences and very pragmatic
need to find something better and more standard for our projeds, since we ae more
involved in development of business-oriented e-commerce systems, than in
infrastructure-level frameworks and components. Several yeas ago it was the
common pradice to build many Java solutions in-house, however, the more mature
Java Platform gets, the more dea is sparation of roles in Java developments - do ane
thingand doit well. Having said that, let us take alook around.

As it was stated ealier, we ae interested mostly in frameworks and products,
which provide objed-relational or objed-any-data-source mappings, contrary to the
type of products, which take cae of objed persistence only using serializaion or
objed-oriented databases. The main reeason for this is the neal to integrate with
existing databases, which in most cases are something more mnservative than pure-
objed repasitories.

If we ae interested in a Java-related solution, it is quite natural to ched out the
area ¢osest to the Sun, for obvious reasons. A couple of yea's ago Sun Microsystems
developed Java Blend persistence framework compliant with ODMG standard for
objed relational mappings and oljed databases. Java Blend] is phisticated and
feaure-rich product, which has interadive DB-objed mapping todls, pre-processor,
suppats Objed Query Language (OQL), etc. Our framework does not come
anywhere nea. However, it is our opinion, that Java BlendD) has svera drawbadks.
The most important one is that Java Blendd is a product, rather an open spedficetion.
Conformance to the ODMG standard daes not replacequite successful pattern when
Sun Microsystems with the help of area eperts leads development of a spedfication,
and industry-leading companies provide implementations afterwards. The secnd
drawbad is the price With all resped to the importance of a top-notch persistence

solution, it is difficult to pay for Java-Orade mapping middeware more than for
Orade license itself. We auld be wrong in license cdculation for Java Blendd, but
prices garting in the range of $80K are alittle bit worrying. And if we remember
where ended Sun’'s home grown Java I DE, we would not be the first to champion Java
BlendO .

It seems, however, that Sun Microsystems had had daubts about Java Blend[D too
and came up with an dternative. This alternative was named Javall Data Objeds
(JDO) and the spedficaion is under development within the Java Community Process
(JSR-00019. Its le objedive is to provide Java developers an objed interfaceto
data stores. In the same way JDBC provides an industry standard way of accessng
data based on SQL, JDO is an industry standard way of accessing data based on Java
objeds.

JDO approach is smilar to our, it provides data accestednique, which does not
reguire knowledge of underlying data store interface JDO goes further by providing
query constructs, which are query language neutral. JDO also provides transparent
persistence via dass enhancer that can process Java byteaode files and creae anew
one with the necessary enhancements. It depends on JDO implementation whether
enhancement takes place adevelopment time or during applicaion runtime.

JDO has been designed to work with Enterprise Java Beans, it provides transparent
persistence for entity beans, the dass developers do not need to provide the
persistence suppat. With EJB sesson beans, the developer implements beans by
explicitly using JDO APIs.

Among areas of concern we could mention the lack of standardization for data
store-objeds mapping. There ae no significant implementations of JDO at this time;
Sun Microsystems recently released the reference implementation, which is
mandatory part to complete JCP spedfication effort.

An interesting implementation similar to JDO is Castor project by ExolLab Group.
Castor also provides Java-to-LDAP and Java-to-XML mappings.

Other vendors, such as Objed Design, Inc. solve objed persistence problem using
proprietary databases (PSE Pro/Java), which is an appeding approach when it is
desirable to separate objed persistencerepository and business database.

Secait Tedhnologies, Inc. has developed Objed Management Group OMGO
Persistent Objed Service based Secant Extreme Persistent Objed Server for Javall,
which beas olid architedure and well designed solutions.

Among the leaders of the Mapping Middeware (the layer between the gplication
server and the database) products is CocoBase product from Thought Inc. The
strength of it isin generating of entity beans from templates, fredng developers from
tedious tasks of persistence implementation. CocoBase is optimised to work with
most of leading application servers.

We believe that the strengths of our solution are simplicity, efficiency, and usage
of standard RDBMS. Additional benefit is encapsulation of different data storage
types under the same interface

5 Conclusions

It is our opinion that the time and effort spent developing and maintaining Javall -
based dbjed persistence framework were agood investment. While being relatively
simple, this framework is powerful and efficient enough to serve everyday needs of
database-related Javall applicaions. This framework was used in number of projeds
(eight, to be more exad) and we have plans to rework and refine some parts of it to
make it up to date and ready for today applications.

The ideato develop such a framework came up after unsuccessful attempts to find
adequate commercial solution afew yeas ago. Success of the framework in numerous
projeds rved as an ingpiration to share our ideas and examine our approad. It is our
opinion that despite the fad of much broader commercial and open-source product
choicetoday than few yeas ago, our framework is gill applicable. It could be used for
solving bean-managed persistence issues in Enterprise Java Beans (EJBO)
applications.

References

1. Ambler, SW.: Complex Data Relationships: Bet on OODBMS. Software Magazne,
January 1995

2. Ambler, SW.: Mapping Objeds to Relational Databases. Software Development, October
1995.

3. Ambler, SW.: Objed-Relational Mapping. Software Development, October 1996.

4, Ambler, SW.: Mapping Objeds to Relational Databases. URL:
http://www.ambysoft.com/mappingObjeds.pdf, 1997.

5. Ambler, SW.: The Design of a Robust Persistence Layer For Relational Databases: An
AmbySoft Inc. White Paper. http://www.ambysoft.com/persistencelayer.html.

6. Atkinson, M.P., Bailey, P., Daynes, L., Printezs, T., Spence, S.: The Design of a new
Persistent Objed Store for Pjama. The Second International Workshop on Persistence and
Java(tm) (PIW2), Half MoonBay, California, August 1997.

7. Atkinson, M.P., Daynes, L., Jordan, M.J., Printezs, T., Spence, S.: An Orthogonally
Persistent Java. ACM Sigmod Reaord, Volume 25, Number 4, Decenber 1996.

8. Atkinson, M.P., Daynes, L., Jordan, M.J., Printezs, T., Spence S.: Design Isaues for
Persistent Java: a type-safe, objed-oriented, orthogonally persistent system. Seventh
International Workshop on Persistent Objed Systems (POS7) Cape May, New Jersey,
May 1996

9. Brown, K., Whitenad, B.: Crosing Chasms. A Pattern Language for Objed-RDBMS
Integration. Pattern Languages of Program Design 2, John M. Vlisddes, JM., Coplien,
J.O., Kerth, N.L., eds., Addison-Wesley, Reading, MA., 1996.

10. Close-up n JDO: a standard for persistence of Java business objeds. TechMetrix
Reseach, February 2001 http://www.techmetrix.com/trendmakerstmk020L/tmk0201-
3.php3.

11. Castor JDO: http://castor.exolab.org/jdo.html.
12. CocoBase: http://www.thoughtinc.com/cber_index.html.

13. Cocobasell Enterprise O/R BusinessBenefits Whitepaper.

14. Dolgicer, M.: CORBA and Java Marriage or just serious dating? Applicaion
Development Trends magazine , January 1999.

15. Java Data Objeds Spedficaion. http://accessl.sun.com/jdo.

16. Jordan, D.: An overview of Sun's Jva Data Objeds pedficaion. JavaReport. June
(2000).

17. Malani,P.: Connedion Strategies in EntityBeans. JavaReport, April 2001.

18. Svirskas A., Sakaauskaite S.: Development of Distributed Systems with Javall and
CORBAQO Isaues and Solutions. DB& 1S 2000, Vilnius.
19. The Objed Data Standard: ODMG 3.0. http://www.odmg.org.

20. The Java Blend White Paper.
http://www.sun.com/software/javablend/whitepapers/index.htm.

21. Yoder, JW., Johnson, R.E., Wilson, Q.D. : Conneding Business Objeds to Relational
Databases. URL.: http://www.joeyoder.com/Reseach/objedmappings/Persista.pdf.

