
Building a Persistent Object Store
using the Java Reflection API

Arthur H. Lee and Ho-Yun Shin

Programming Systems Laboratory
Department of Computer Science

Korea University
Seoul, Korea

+82-2-3290-3196 (phone)
+82-2-925-3215 (fax)

{alee, hyshin}@psl.korea.ac.kr

ABSTRACT
In this paper we describe a persistent object store designed
and implemented to test and evaluate the merits and
shortcomings of the Java Reflection API. Our goal is to
design a persistent object store that supports transparent
object persistence. Our premise was that we should be able
to achieve this goal if the reflection API is designed with
enough features and flexibility. It turns out that most of the
needs for object persistence was nicely met by the current
reflection API, but we also found that some could not be
done with the current API. We describe in detail the merits
and shortcomings seen from the viewpoint of an object
persistence implementor.

Keywords
Java, reflection, object persistence

INTRODUCTION
Using persistent object stores in dealing with data
management has advantages over using other traditional
data management systems such as relational data base
management systems (RDBMS) [Loom95]. With a
persistent object store (POS) the client code accessing the
data managed by the persistent object store is written in an
object-oriented language as opposed to the data definition
languages (DDLs) and data manipulation languages
(DMLs) in the case of a relational DBMS. However, the
client code using persistent objects still has to write a fair
amount of boring code to benefit from the objects being
saved and loaded [Banc88, Care89, Deux90, Kim95]. It is

even worse when this kind of meta information has to
evolve over time and it does in most cases. That is, the class
definitions often change and the objects saved in the store
have to evolve to match the changes in the definitions.
Unfortunately the recent applications demand more changes
in their data being used, and the problem is getting worse.

 With the reflection API supported by Java, this problem
can be simplified a great deal and we describe a design and
implementation of a persistent object store using the Java
Reflection API.

THE JAVA REFLECTION API
Using the Java reflection API included in the Java
Development Kit (JDK) version 1.1 or higher, a
programmer can obtain meta information on the Java
objects at run-time [Flan97]. That is, the programmer can
access the information on a class definition including the
fields and methods of the class. Additionally, it supports
method invocations and accessing field values as long as it
does not break the Java security boundary. All these extra
capabilities are possible because this kind of meta
information is maintained by the Java run-time system.
What is better, the Java run-time elements are all objects
themselves with their meta information available for access
as well, thus allowing consistent access patterns.

The Java Reflection API maintains a metaobject for each of
the main elements of the language such as a class, method,
and field. All this centers around the class called Class .
There is one instance of the class Class for each class
loaded in the run-time environment. User code can get to
the metaobject by invoking the getClass method given
an object. Once a metaobject is obtained, a number of
methods are available for accessing the state information on
the metaobjects.

User code can access the fields or the methods of an object
via field objects or method objects. For example, the name
and the value of a field can be obtained through the field
object. Similarly, the name of a method can be obtained
and the method can actually be invoked through the method
object.

The Class class supports getMethods, get-
Method, getDeclaredMethods, getDeclared-
Fields, getFields, and getField for user code
to call.

The Java Reflection API also supports a static class named
Array for the arrays. There is no instance of Class for
an array, but the Array class handles the task of
maintaining the meta information for an array.

BASIC IDEA
In the traditional persistent object stores client code must
explicitly provide the meta information for persistent
objects. Based on the information, the persistent object
store manages the objects by saving and loading each field
of persistent objects as needed.

 When the meta information is available with the help of
the reflection API, client code can access objects in a
persistent object store without having to write any extra
code to specify the meta information for the persistent
objects. The client code can be much simpler and some of
the performance issues can be dealt with by the underlying
persistent object store. A similar idea using the metaobject
protocol of Common Lisp Object System but with a
different design can be found in [LZ97].

DESIGN AND IMPLEMENTATION
Overview
We tried to focus our design of the persistent object store
on easy programming interface and lean design targeted for
applications requiring small to medium amount of data, say
about 50,000 objects of typical sizes. Our design is
intentionally simple in functionality still providing almost
transparent persistence for easy interface on the part of
client code.

 Sequential access files are adopted as the structure of
secondary storage system in our design. All persistent
objects are saved and loaded in batch mode. With our goal
mentioned above, this design is acceptable.

 Our system consists of the PersistentRoot class,
POS Indexing Manager, and Object Storage Manager. The
PersistentRoot class is viewed as the user interface
for object persistence. All persistent classes must inherit the
PersistentRoot class, thus our system supports object
persistence by inheritance. The POS Indexing Manager
maintains an internal structure for objects. This also handles

the search function for programmers. The Object Storage
Manager is invisible to the client code, and plays the role of
connecting persistent objects to the secondary storage
system.

The Life Cycle of an Object in the POS Environment
Perhaps it would help the reader understand the overall
design a little easier if we describe the life cycle of a
persistent object. Along the way, we will indicate where
the Java Reflection API plays what role.

When we define a persistent object, we would indicate that
the object is persistent and provide the necessary meta
information for persistence. In our design, however, all a
persistent class has to do is inherit the PersistentRoot
class. Then the meta information that we need to save an
object can be obtained through the Java reflection API at
run time.

Once an object is created from a persistent class, to the
client code the object seems mush the same as an ordinary
object in the way it is accessed. However, the system
performs some extra work internally. A persistent object
created from a persistent class that inherits the
PersistentRoot class is registered in the POS system
as persistent by the constructor of the class. A unique
object identifier (OID) is also assigned at this point. At
some point while a persistent object is being accessed, the
client code invokes the saveAll method to save all the
persistent objects to the POS. This in turn calls the save
method for each object registered in the POS. A save
method at this point has to know what part of the object has
to be saved, i.e., some meta information is needed.
Ordinarily this would be provided by the client code, but it
is obtained through the Java reflection API in our system,
thus reducing much of the unnecessary overhead of the
client code. Through the Java reflection API, we can
access the meta information and the value of a field. So, we
can save the current state of an object by accessing the
fields declared to be public or protected . The current
Java reflection API does not allow accesses to the fields
that are declared private other than the name of the
field. So, in our current design we had to devise an ad hoc
mechanism to compensate this situation. If a field of an
object has an object reference as a part of its value, the
reference is converted into a logical identifier (OID) before
it is saved.

Once saveAll is completed, the memory copy of the
saved objects behave the same as they did before they were
saved. Figure 1 summarizes the creation and saving phases
of a persistent object using the reflection API. The portion
marked by the dotted box depicts how the reflection API is
used to obtain the meta information.

When an application is started anew or a running
application needs to load saved objects, client code can
invoke the loadAll method. The loadAll method
reads in the saved objects one at a time and decides the
class from which the object was originally created, and then
creates a new copy in the memory. At this point all the
meta information needed to create the object can be
obtained from the Java reflection API. Once an object is
created this way, the values of the fields can then be
instantiated by invoking the load method of the object. A
logical ID saved as a part of a field value is converted back
to the physical address as objects are loaded. A similar
figure to Figure 1 could be drawn for the loading phase of a
persistent object’s life cycle.

PersistentRoot class
The PersistentRoot class acts as the programmer’s
interface to the persistent object store. All the objects
created from a class that inherits the PersistentRoot
class will be persistent. In most cases, user code does not
have to do any special work other than inheriting the class
to define persistent objects.

 Three main operations of the PersistentRoot class
include the save method, load method, and the
constructor. The constructor registers persistent objects to
the indexing manager. This way, all persistent objects are
implicitly registered during its instantiation process. Each

persistent object is assigned a unique object identifier
(OID).

 The save method saves the current state of a persistent
object to the secondary storage. It first obtains the meta
information on the class definition of the run-time object
from the reflection API. Based on the field information
from the meta data, the value of each field is saved. Since
the meta data are used through the reflection API, this piece
of code in the save method does not have to hard code the
field names. All the field values of atomic data types are
saved as such and object references are saved using the
OID, the logical address, of the persistent object. All the
referenced objects are also saved, thus all the objects
reachable from a persistent object are saved.

 The load method loads a saved object from the
secondary storage into memory. By the time a persistent
object is loaded, the class definition for the saved object
should already be in the Java run-time system. So, an object
is created for the saved object and the fields are instantiated
with the state that was saved in the store. The object
references that were converted from the physical addresses
to the logical addresses, OID's, are reverted back to new
physical addresses in memory as the objects are loaded,
thus the OID's are swizzled into physical object references
again [Moss91, Loom95]. If a field in a class is declared to
be private , then there is a problem with this strategy.
We will elaborate on this point in the next section.

User

Persistent
Object

Index
Manager

Class
Object

Field

Storage
Manager

create

register
saveAll

save
getClass

getDeclaredFields

get

write

Figure 1 : Saving a persistent object using the Java reflection API

Java
reflection

POS Indexing Manager
The Indexing Manager is designed with a B+ Tree. Each
persistent object is inserted into the tree and its OID is used
as the key for indexing the object. This is transparent to the
client code. Two useful methods, saveAll and
loadAll , are provided to the client code to save all the
objects as a snapshot or load all the objects from file
containing a snapshot. The saveAll method saves all the
objects registered in the Indexing Manager by invoking the
save method on each object.

 Similarly, loadAll loads all the objects by loading each
object in a file. For each object, a new instance of target
object is created and the load method is invoked on that
newly created object to read the state of the object saved,
thus recovering a saved state by instantiating a new
instance. In the case of a non-memory-resident object
reference in the object currently being loaded, a temporary
empty object is created and referenced. Since this
temporary empty object has its OID, it can later be
instantiated with the state saved as long as the save was
done right.

 Another functionality of the Indexing Manager is
provided by the search method, it searches an object by
stringfied field name and its value that is passed as a
parameter. This operation is done easily again using the
Java reflection API.

Object Storage Manager
The Object Storage Manager is an interface that links a
memory resident object and the secondary storage. It
provides a simple API which reads a block of data from and
writes to a persistent storage file. This manager is also
transparent to the client code.

LIMITATIONS OF THE JAVA REFLECTION API IN
IMPLEMENTING A PERSISTENTOBJECT STORE
Due to the protection mechanism adopted by Java, the
reflection API can not access the fields and methods
declared to be private . Therefore, the design we
described so far can not allow classes with private
fields. Rather than restricting the semantics of class fields,
we decided to come up with an ad hoc solution for now.
We added two methods to the PersistentRoot class,
userSave and userLoad , to solve this problem. The
userSave method is invoked before invoking the save
method on a persistent object. For private fields in a
persistent object, values of the private fields are moved by
the userSave method to the userObjects field
declared to be public in the PersistentRoot class
whose type is an array of Java Object class. The state of
all the private fields can then be restored by the userLoad

method which is invoked right after the usual load method
is invoked as a persistent object is loaded from the store.

This sort of ad hoc solution is not desirable and we suggest
extending the semantics of the Java reflection API so that
private fields can also be accessed. However, this has to be
done without compromising the Java security model. One
possible solution might be to allow a class definition to
specify what can be accessed by the reflection API. This is
not a perfect solution, but at least the security can be
maintained by the client code that defines the class. This
level of modification in the reflection API would have
solved the problem that we faced in our design without
having to resort to the ad hoc solution that we adopted.

CONCLUSION AND FUTURE WORK
In most persistent object stores, a client programmer must
specify the meta information for the persistent objects or
use a preprocessor to support object persistence. This
additional programming is not desirable and becomes the
source of maintenance nightmare. To eliminate these
difficulties, we designed and implemented a persistent
object store using the Java reflection API. With this design
a client programmer to the POS does not have to provide
the meta information for the persistent objects. This design
makes dealing with class evolution easier as well.

 However, we encountered a difficult problem using the
reflection API to implement a persistent object store. The
Java security system does not permit the reflection API to
access fields and methods declared to be private . Short
of being able to change the Java implementation, we
devised an ad hoc solution. This solution requires two
extra methods for each persistent class: one for saving
objects and the other for loading objects. This forced us to
compromise on some of our design goals, e.g., transparent
object persistence is somewhat compromised.

 We are investigating the Java security environment in
relation to the Java reflection API. It would be nice to find
a way to allow more access to the object data including the
fields declared to be private by the reflection API
without sacrificing the security concerns.

 Although not confirmed, it seems that even the fields
declared private can be accessed through the Java reflection
API on the JDK 1.2 version according to [Oaks98].

REFERENCES
[Banc88] F. Bancilhon. et. al. “The Designing and

Implementation of O2, an Object-Oriented
Database System,” OODBS, 1988.

[Care89] Michael J. Carey, et. al. “Storage Management for
Objects in EXODUS,” Object-Oriented Concepts,
Databases, and Applications, W. Kim and F. H.
Lochovsky, eds., ACM Press, 1989.

[Deux90] O. Deux, et. al. “The Story of O2,” IEEE
Transactions on Knowledge and Data
Engineering, Vol 2, No. 1, March 1990.

[Flan97] David Flanagan, Java in a nutshell, O’Reilly, pp.
219-226, 1997.

[Kim95] Won Kim, Modern Database Systems, ACM
Press, pp. 175-202, 1995.

[LZ97] Arthur H. Lee and Joe Zachary, “Adding Support
for Persistence to CLOS via its Metaobject
Protocol,” Lisp and Symbolic Computation: An

International Journal, Vol. 10, No. 1, pp. 39-60,
1997.

[Loom95] Mary E. S. Loomis, Object Databases – The
Essentials, Addison-Wesley, 1995.

[Moss91] J. Eliot B. Moss, “Working with Persistent
Objects: To Swizzle or Not to Swizzle,” IEEE
Transactions on Computers, 1991.

[Oaks98] Scott Oaks, JAVA Security, O’Reilly, p.431,
1998.

