
Specifications:
PostFilterMappingTransformer
A PostFilterMappingTransformer object first filters a List<LabeledDouble> object
and then applies a map to each element of the filtered collection to obtain the elements of the
collection it returns. Such an object can be used for a variety of purposes. One example is to
create a List<LabeledDouble> that contains the credits earned for each course that a
student passed from a List<LabeledDouble> of course grades. For example, given:

List<LabeledDouble> grades;

that contains the grades of a student for each course (where the course identifier is the label),
and:

Map<String, Double> courseMap;

that contains a mapping from course identifiers to credits, one could accomplish this as follows:

Filter passing = new ThresholdFilter(0.0, 1);
Transformer transformer = new PostFilterMappingTransformer(passing,
 courseMap);
List<LabeledDouble> credits = transformer.apply(grades);

The following UML class diagram illustrates the relationship between the Transformer
interface and the PostFilterMappingTransformer class.

In addition to the obvious specifications illustrated in the UML class diagram, the
PostFilterMappingTransformer class must satisfy the following specifications.

1. You may assume that the apply() method is passed a List that does not contain any
null elements.

2. The apply() method must not have any side effects. That is, it must not change the
parameters that it is passed in any way and it must not change any attributes in any way.

3. The apply() method must construct a new List that is a subset of the List it is passed.
3.1. If the apply() method is passed a null List then it must throw a SizeException.
3.2. If the apply() method is passed a non-null then it must return a new List or throw

a SizeException as described below.
3.2.1. The List to return must be calculated by first applying the filter attribute (if it

is non-null) to the original List and then applying the map attribute to the
filtered List. (If the filter attribute is null then the original List must not be
filtered in any way.)

3.2.1.1. Each element in the returned List must be a LeafLabeledDouble.
3.2.1.1.1. The label attribute must be the label of the element in the filtered

List.
3.2.1.1.2. The value attribute must be the value in the map object that has

the same key as the label attribute.
3.2.1.1.2.1. If the map object is null then the value attribute must be

null.
3.2.1.1.2.2. If the label attribute does not have a corresponding key in

the map object then the value attribute must be null.
3.2.2. If the List to return contains no elements then the apply() method must throw

a SizeException.

