Tasks

Tasks

X1 Settle on an approach for handling

missing values

X2 Design a utility class for working with

missing elements
X3 Design unit tests for the class in task 2
04
05
6

Implement the unit tests in task 3
Implement the class in task 2

Test (and debug if necessary) the class
in task 8

X7 Design an approach for representing
non-missing scores that can be

associated with a weight

Design an approach for representing
missing scores that can be associated
with a weight

[19 Design unit tests for the class in tasks

7-8

(110 Implement the unit tests for the class in
task 7-8

[111 Test and debug the class in task 7-8

X112 Determine how to handle size issues

XI13 Design a class that can be used to drop
the highest and lowest scores

X114 Determine whether the class in task 13
should implement an interface

X15 Design unit tests for the class in task 13

Stories

S1-S9

S1-S9

S1-S9

S1-S9
S1-S9
S1-S9

S1-S9

S1-S9

S1-S9

S1-S9

S1-S9

S1

S1

S1

Related Documents/Notes

Use Double objects rather than
double values and use null to
represent missing values

The specifications for the
Missing class

The description of the unit tests for
the Missing class

UML diagram for the Score class
and specification 1 of the Score
class

Specifications 2-4 of the Score
class

The specifications for the
SizeException class

The specifications for the
DropRule class

The Rule interface in the design
document

The description of the unit tests for



116 Implement the unit tests for the class in
task 13

[J17 Implement the class in task 13

118 Test (and debug, if necessary) the class
in task 13

X119 Design a class that can be used to
calculate weighted totals

X120 Determine whether the class in task 19
should implement an interface

X121 Design a class that can be used to
calculate totals

(122 Determine the relationship between the
classes in tasks 19 and 21

XI23 Design one integration test with
complete information for the class in
task 19

XI24 Design integration test with missing
weights for the class in task 19

X125 Design one integration test with invalid
weights for the class in task 19

XI26 Design integration tests with missing
scores for the class in task 19

127 Implement the integration tests for the
class in task 19

(128 Design integration tests for the class in
task 21

129 Implement the integration tests for the
class in task 21

[J30 Implement the classes in tasks 19 and
21

131 Test (and debug if necessary) the
classes in tasks 19 and 21

X132 Design an approach for representing a
diver’s position

133 Implement the class/enum in task 32

133 Test (and debug if necessary) the
class/enum in tasks 32 and 33

S1

S1
S1

S1

S1

S1

S3

S4

S5

S6

S9

the DropRule class

The specifications for the
WeightedTotalSystem class

The ScoringSystem interface in
the design document

The specifications for the
TotalSystem class

Tests: IT Complete 01

Tests: IT Missing Weight 01, IT
Missing Weight 02

Tests: IT Invalid Weight 01

Tests: IT Missing Score 01, IT
Missing Score 02, IT Missing
Score and Missing Weight 01

The specifications for the
Position enum



X34 Implement the code that accesses the
command line arguments

X35 Implement the code that converts “N/A”
arguments to missing values

XI36 Implement the code that calculates and
displays the scores

XI37 Create two system tests with no
missing scores

XI38 Create test with one missing score for
one judge

139 Create Eclipse “Run Configurations” for
each test

140 Test the system

141 Debug the system (if necessary)

S7

S8

S9

S9

S9

S7, S8,
S9

S7, S8,
S9

S1-S9

IndividualScorer.java

IndividualScorer.java

IndividualScorer.java

Tests: ST Complete 01, ST
Complete 02

Test: ST Missing 01



