
Tasks
Tasks Stories Related Documents/Notes

☒1 Settle on an approach for handling
missing values

S1-S9 Use Double objects rather than
double values and use null to
represent missing values

☒2 Design a utility class for working with
missing elements

S1-S9 The specifications for the
Missing class

☒3 Design unit tests for the class in task 2 S1-S9 The description of the unit tests for
the Missing class

☐4 Implement the unit tests in task 3 S1-S9

☐5 Implement the class in task 2 S1-S9

☐6 Test (and debug if necessary) the class
in task 8

S1-S9

☒7 Design an approach for representing
non-missing scores that can be
associated with a weight

S1-S9 UML diagram for the Score class
and specification 1 of the Score
class

☒8 Design an approach for representing
missing scores that can be associated
with a weight

S1-S9 Specifications 2-4 of the Score
class

☐9 Design unit tests for the class in tasks
7-8

S1-S9

1☐ 0 Implement the unit tests for the class in
task 7-8

S1-S9

1☐ 1 Test and debug the class in task 7-8 S1-S9

12☒ Determine how to handle size issues The specifications for the
SizeException class

1☒ 3 Design a class that can be used to drop
the highest and lowest scores

S1 The specifications for the
DropRule class

☒14 Determine whether the class in task 13
should implement an interface

S1 The Rule interface in the design
document

☒15 Design unit tests for the class in task 13 S1 The description of the unit tests for

the DropRule class

☐16 Implement the unit tests for the class in
task 13

S1

☐17 Implement the class in task 13 S1

☐18 Test (and debug, if necessary) the class
in task 13

S1

1☒ 9 Design a class that can be used to
calculate weighted totals

S1 The specifications for the
WeightedTotalSystem class

☒20 Determine whether the class in task 19
should implement an interface

S1 The ScoringSystem interface in
the design document

☒21 Design a class that can be used to
calculate totals

S1 The specifications for the
TotalSystem class

☐22 Determine the relationship between the
classes in tasks 19 and 21

☒23 Design one integration test with
complete information for the class in
task 19

S3 Tests: IT Complete 01

☒24 Design integration test with missing
weights for the class in task 19

S4 Tests: IT Missing Weight 01, IT
Missing Weight 02

☒25 Design one integration test with invalid
weights for the class in task 19

S5 Tests: IT Invalid Weight 01

☒26 Design integration tests with missing
scores for the class in task 19

S6 Tests: IT Missing Score 01, IT
Missing Score 02, IT Missing
Score and Missing Weight 01

☐27 Implement the integration tests for the
class in task 19

☐28 Design integration tests for the class in
task 21

☐29 Implement the integration tests for the
class in task 21

☐30 Implement the classes in tasks 19 and
21

☐31 Test (and debug if necessary) the
classes in tasks 19 and 21

☒32 Design an approach for representing a
diver’s position

S9 The specifications for the
Position enum

☐33 Implement the class/enum in task 32

☐33 Test (and debug if necessary) the
class/enum in tasks 32 and 33

☒34 Implement the code that accesses the
command line arguments

S7 IndividualScorer.java

☒35 Implement the code that converts “N/A”
arguments to missing values

S8 IndividualScorer.java

☒36 Implement the code that calculates and
displays the scores

S9 IndividualScorer.java

☒37 Create two system tests with no
missing scores

S9 Tests: ST Complete 01, ST
Complete 02

☒38 Create test with one missing score for
one judge

S9 Test: ST Missing 01

3☐ 9 Create Eclipse “Run Configurations” for
each test

S7, S8,
S9

☐40 Test the system S7, S8,
S9

☐41 Debug the system (if necessary) S1-S9

