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Motivation

• Some History:
The shortest path problem is easy to solve

25 years ago it became clear that we could de-

velop route guidance systems if we only had net-

work data

• The Breakthrough (in the U.S.):
The Census Bureau digitized the entire country

• Today:
A few companies maintain and market (very sim-

ilar) street databases

Many companies develop and market route guid-

ance systems

• A Thought Experiment:
What would happen if “everyone” used such a

system to determine their route from home to

work?
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Notation

• The Network:
N denotes the set of nodes

A denotes the set of arcs (or links)

W ⊆ N 2 denotes the set of origin-destinat pairs

Rw denotes the set of routes connecting w ∈ W
(with Rw = |Rw|)
R =

⋃
w∈W Rw (with R =

∑
w∈W Rw)

c : Z
R
+ → R

R
+ denotes the vector of route cost

functions

• Demand and Flows:
D = (Dw : w ∈ W) ∈ Z

R
++ denotes the demand

vector

h = (hr : r ∈ R) ∈ Z
R
+ denotes the route “flow”

vector

HD =
{
h ∈ Z

R
+ :

∑
r∈Rw hr = Dw,w ∈ W

}
de-

notes a feasible route flow pattern
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Behavioral Model

• The Key Behavioral Assumption:
Each commuter attempts to minimize her/his own

travel cost, given the behavior of other commuters

• The Equilibrium Model:
A flow pattern, h ∈ HD is said to be a (Nash)

network equilibrium iff:

hr > 0⇒ cr(h) ≤ cs(h + 1s − 1r)∀s ∈ Rw

for all r ∈ Rw and w ∈ W .

• An Interpretation:
In equilibrium, no commuter has any incentive to

change her/his route
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The Important Questions

• Existence:
When will such an equilibrium exist?

• Uniqueness:
When will there be exactly one equilibrium?

• Stability:
When will the equilibrium (or set of equilibria)

be stable?

• Computation:
Can we find equilibria efficiently (using a numer-

ical algorithm)?
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A Simplifying Assumption

• Something a Computer Scientist Should Never Do:
Consider the limiting case

• Operationalizing this Simplification:
The equilibrium condition:

hr > 0⇒ cr(h) ≤ cs(h + 1s − 1r)∀s ∈ Rw

becomes:

hr > 0⇒ cr(h) ≤ cs(h + ε1s − ε1r)∀s ∈ Rw

and we consider the limit as ε → 0
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Starting Again

• Notation:
Replace Z with R above

Let cw(h) = min{cs(h) : s ∈ Rw}

• The Equilibrium Model:
A flow pattern, h ∈ HD is said to be a continuous

network equilibrium iff:

hr > 0⇒ cr(h) = cw(h)

for all r ∈ Rw and w ∈ W .
The set of such flow patterns is denoted by CNE(c,D)

• Interpretation:
In equilibrium, the cost on all used routes (con-

necting an OD-pair) must be minimal (and, hence,

equal)
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A Graphical Approach

• The Network:

Origin Destination

• A Simple Case:
c h1 1( )

c h2 2( ) c2c1

h1=0 h D1=
h D2= h2=0
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Some Interesting Cases

• No Intersection:

c2c1

h1=0 h D1=
h D2= h2=0

c h1 1( )

c h2 2( )

• Discontinuous Costs:
c2c1

h1=0 h D1=
h D2= h2=0

c h2 2( )

c h1 1( )
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Some Interesting Cases (cont.)

• Many Points of Equal Cost:
c2c1

h1=0 h D1=
h D2= h2=0

c h2 2( ) c h1 1( )

• No Intersection:
c2c1

h1=0 h D1=
h D2= h2=0

c h1 1( ) c h2 2( )
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Lagrange Multipliers: A Review

• The Theorem:
Let f : R

n → R and h : R
m → R be “appro-

priately continuous and differentiable” functions.

Let x ∈ R
n with h(x) = c, and let S denote the

level set for h with value c. If f restricted to S

has an optimum at x then there exists a λ ∈ R

such that:

∇f(x)− λ∇h(x) = 0

• An Interpretation:
Let

L(x) = f(x)− λh(x)

and consider the critical points of L
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Karush-Kuhn-Tucker Conditions

• Motivation:
L involves problems of the form:

minx f(x)

s.t. hi(x) = 0 for i = 1, . . . , l

KKT deal with problems of the form:

minx f(x)

s.t. hi(x) = 0 for i = 1, . . . , l

gi(x) ≤ 0 for i = 1, . . . ,m

• The Necessary Conditions:
For “appropriately continuous and differentiable”

functions, if x solves the problem above then

there exist scalars µi and λi such that:

∇f(x) +
m∑
i=1

µi∇gi(x) +
l∑

i=1
λi∇hi(x) = 0

µigi(x) = 0 for i = 1, . . . ,m

µi ≥ 0 for i = 1, . . . ,m

• The Sufficient Conditions:
Require appropriate convexity of f , gi and hi
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Back to the Continuous Equilibrium Problem

• An Optimization Problem:
minh V (h)

s.t.
∑
r∈Rw hr = Dw w ∈ W

hr ≥ 0 r ∈ R

• The KKT Conditions:
∇rV (h)−µw−ηr ≥ 0 for all r ∈ Rw and w ∈ W
ηrhr = 0 for all r ∈ R
ηr ≥ 0 for all r ∈ R
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Using the KKT Conditions

∇rV (h) − µw − ηr ≥ 0 for all r ∈ Rw and w ∈ W
ηrhr = 0 for all r ∈ R
ηr ≥ 0 for all r ∈ R

• Some Simple Results:
It follows from ηr ≥ 0 and∇rV (h)−µw−ηr ≥ 0
that ∇rV (h) ≥ µw

It follows from ηrhr = 0 that hr > 0⇒ ηr = 0

It follows that hr > 0⇒ ∇rV (h) = µw

• It Would Be Nice If:
∇r(h) = cr(h) for all r ∈ R
(i.e., ∇V (h) = c(h))

• Because Then:
µw would be cw(h)

A minimizer of V (h) subject to h ∈ HD would

be an equilibrium
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In Order to Move Ahead

• An Important Question:
Given a function, c : RR

+ → R
R
+, under what con-

ditions does there exist a function, V ∈ C1(RR
+),

with ∇V = c?

• This Question Arises Elsewhere:
In physics V is called a potential function for the

gradient vector field, c
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In Order to Move Ahead (cont.)

• One Important Sufficient Condition:
Path Independence [Stoke’s Theorem]

• A Potential Function:

V (h) =
∮ h

0
c(ω)dω

• A More Easily Verified Sufficient Condition:
Lipschitz continuous costs (i.e., ||c(x)− c(y)|| ≤
K||x− y|| where || · || denotes the max norm)
Symmetry (i.e., ∇rcs(h) = ∇scr(h) for almost

all h where both gradients exist) [Frobenius The-

orem]

• A Usable Formulation:
The Rectilinear Path of Integration:

V (h) =
R∑
i=1

∫ hi

0
ci(h1, h2, . . . , hi−1, x, 0, . . . , 0)dx
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How Does This Help?

• Existence:
An equilibrium will exist whenever a minimum

exists

• Uniqueness:
The objective function is, in general, not strictly

convex so equilibrium route flows are not unique

However, if route costs are additive we can use

the following function of link flows:

L∑
i=1

∫ fi

0
ti(f1, f2, . . . , fi−1, x, 0, . . . , 0)dx

which is strictly convex if the link cost function,

t, is strictly monotone
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How Does This Help? (cont.)

• Calculation:
Consider feasible descent algorithms – we need to

calculate an initial feasible solution and then we

need to iteratively find feasible descent directions.

Can we?

• Stability:
We need a behaviorally meaningful adjustment

process
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A Behavioral Adjustment Mechanism

• Notation:
ḣrs denotes the switching rate from r to s (where

r, s ∈ Rw) and ḣr ≡ ∑
s∈Rw−r(ḣsr − ḣrs).

ḣrs is assumed to be determined by some route

switching process ars(h) ≥ 0 with an associated
adjustment operator ar(h) ≡ ∑

s∈Rw−r(asr −
ars).

A function p : R+ → R
R satisfying ṗ(t) =

a[p(t)], t ∈ R+ is called an adjustment path for

a.

• Behavioral Assumptions:
A c-adjustment operator, a, must satisfy:

(Rationality) ars(h) > 0⇒ cr(h) > cs(h)

(Feasibility) p(0) ∈ HD ⇒ p ⊆ HD

(Persistency) a(h) = 0⇔ h ∈ CNE(c,D)
for all D and r, s ∈ Rw
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Adjustments and Stability

• Notation:
The Hausdorff distance from a point, h ∈ R

R,

to a nonempty set, S ⊆ R
R, is given by

ρ(h, S) = inf{‖h− x‖ : x ∈ S}.
The neighborhood of S in HD is given by

HD(S, ε) = {h ∈ HD : ρ(h, S) ≤ ε}.
The set of minima is given by

MIN(V c, S) = {h ∈ S : V c(h) = ming∈S V c(g)}.

• Definitions:
A set S ⊆ HD is locally V c-minimal iff there ex-

ists some ε > 0 such that S = MIN[V c,HD(S, ε)]

and S is isolated iff S = KKT(V c,HD)∩HD(S, ε).

A set, S ⊆ HD is asymptotically a-stable iff

there exists some ε > 0 such that

p(0) ∈ HD(S, ε)⇒ lim
t→∞ ρ[p(t), S] = 0

and for each ε > 0 there is some αε ∈ (0, ε] such
that

p(0) ∈ HD(s, αε)⇒ p(R+) ⊆ HD(S, ε)



Calculus for the Morning Commute - 20 MADISON
UNIVERSITY®

JAMES

A Stability Property

Theorem:

If c is a gradient cost structure with cost po-

tential V c, then for all c-adjustment processes a

and demand patternsD each isolated, locally V c-

minimal set, S ⊆ HD is asymptotically a-stable.

Sketch of the Proof:

1. Show that V c is a strict Liapunov function for

every c-adjustment process a (i.e., that h ∈ HD ⇒
V̇ c(h) ≤ 0 and that V̇ c(h) = 0⇒ a(h) = 0).

2. Show that if there exists a Liapunov function V c

for a on HD then every locally V
c-minimal set is

a-stable.

3. Show that all c-adjustment processes, a, for gra-

dient cost structures eventually converge to net-

work equilibria.
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An Interesting Adjustment Process

• Notation:
For any x ∈ R let x+ = max{0, x}
δ0(0) = 1 and δ0(x) = 0 for all x > 0

• The Process:
a∞rs(h) = hr[cr(h)− cs(h)]+δ0[cs(h)− cw(h)]

a∞r (h) =
∑
s∈Rw−r[a

∞
sr(h+)− ars(h+)]

• What’s Interesting About It?
It involves discontinuities at every point where

the set of minimal cost routes inRw changes (for

any w ∈ W)
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A Solution Concept for Discontinuous Dif. Eqs.

• Notation:
Given x ∈ R

n and a nonempty set S ⊆ R
n,

the Hausdorff distance from x to S is defined as

ρ(x, S) = inf{||x− y|| : y ∈ S}
For any ε > 0, closed set X ⊆ R

n and nonempty

set S ⊆ X , the ε-neghborhood of S in X is de-

fined as X(S, ε) = {x ∈ X : ρ(x, S) ≤ ε}
conv(S) denotes the convex hull of the set S ∈
R

n

cconv(S) denotes the closure of the convex hull

of the set S ∈ R
n

• Getting Started:
If the image set of a∞ is denoted by a∞[HD(h, ε)] =

{a∞(g) : g ∈ HD(h, ε)} then cconv(a∞[HD(h, ε)])

contains all of the convex combinations of vectors

in a∞[HD(h, ε)]
⋂
ε>0 cconv(a

∞[HD(h, ε)]) must contain the limits

of such convex combinations as the size of the

neighborhood goes to zero
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A Solution Concept for Disc. Dif. Eqs. (cont.)

• A Reminder
A function, f : [a, b] → R

n is said to be abso-

lutely continuous on [a, b] if given ε > 0 there

exists a δ > 0 such that

n∑
i=1

||f(yi)− f(zi)||∞ < ε

for every finite collextion, {(yi, zi) : i = 1, . . . , n}
of nonoverlapping intervals with

∑n
i=1 |yi−zi| < δ

• Krasovkij Solutions to a∞:
An absolutely continuous function, p : R+ → R

R
+

is a solution to a∞ iff for almost all t ∈ R+

ṗ(t) ∈ ⋂
ε>0
cconv(a∞[HD(p(t), ε)])

• An Observation:
Over regions of HD where a

∞ is continuous, this
reduces to ṗ(t) = a∞[p(t)] (i.e., the classical Carathéodory
solution)



Calculus for the Morning Commute - 24 MADISON
UNIVERSITY®

JAMES

An Example

• One OD with three Routes:
D = 12

c1(h) = 1 + h2
1

c2(h) = 1 + h2

c3(h) = 15 + h3

• Solving:
The unique equilibrium is h∗ = (3, 9, 0)
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An Example

1232

4

9

12

p(0)

p(0)
.

3

2

1

h1

hs

C

C, is the set of points with c1(h) = c2(h)

At p(0) commuters on 3 will siwtch to 1 and 2 so p moves

in direction 1

This movement collapses the set of minimum cost routes

from {1, 2} to {2} so commuters instantly stop switching
to 1, moving p in direction 2

This shifts the set of minimum cost routes to {1} so that
commuters instantly stop switching to 2 and start switch-

ing to 1, moving p in direction 3
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An Example (cont.)

• Conclusion:
No direction of movement can persist for more

than an instant (called a chattering regime)

Commuters are continuously switching to 1 or 2

(or both) so the p is moving up and to the right

• Interpretation:
The cone of feasible direction vectors corresponds

to
⋂
ε>0 cconv(a

∞[HD(p(0), ε)]) (i.e., the Krasovskij

solutions)

• Observations:
The only absoutely continuous adjustment path

starting at a point on C is the path with trajec-

tory along C

ṗ(t) must be almost everywhere tangent to C

a∞[p(t)] is always parallel to direction 1 for any
point p(t) ∈ C

So ṗ(t) is nowhere equal to a∞[p(t)]
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Lower-Semicontinuous Costs

• Definition of Equilibrium:
The classical definition (Wardrop) doesn’t work

Other definitions (Dafermos, Heydecker) allow

collaboration

The most obvious alternative (Nash) doesn’t work

• Modeling “Smallness”:
liminfε↓0cr(h + ε1r − ε1s) =

limε↓0 inf{cr(h+α1r−α1s) : 0 < α < min(ε, hs)}

• New Definition:
h is a user equilibrium iff:

hr > 0⇒ cr(h) ≤ liminfε↓0cs(h + ε1s − ε1r)
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Lower-Semicontinuous Costs (cont.)

• One Result:
If c is lower semicontinuous then every Wardrop

eqm is a user eqm

If c is upper semicontinuous then every user eqm

is a Wardrop eqm

• Another Result:
If c is lower semicontinuous and flow shifts be-

tween routes only create discontinuities on those

links where the flow changes then a user equilib-

rium exists
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SRD Equilibrium

• The Issue:
Drivers simultaneously choose both a path, p,

and a departure time, t ∈ [0, T ].

• Fluid Approximation:
The departure rate on path p at time t is denoted

by hp(t) ∈ �+
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SRD Equilibrium (cont.)

• Notation:
h(t) = (hr(t) : r ∈ R)
HD =

{
h :

∑
r∈Rw

∫T
0 hr(t)dν(t) = Dw,w ∈ W

}

(where ν(t) is a Lebesgue measure on [0, T ]).

• Assumptions:
Each departure rate pattern, h, gives rise to a

(time varying) traffic pattern , x(t) = (xa(t) :

a ∈ A).

The relationship between h and x is driven by

the time needed to traverse arc a when entered

at time t, da(t).

Link travel times are determined by the link oc-

cupancies at the time the link is entered (i.e., the

number of vehicles ahead of you on a link when

you enter).
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SRD Equilibrium (cont.)

The time needed to traverse path r when departing from

the origin at time t is given by:

dp(t, h) = dar
1
[xar

1
(t)] + dar

2
[xar

2
(τar

1
(t))]

+ · · · + dar
m(r)
[xar

m(r)
(τar

m(r)−1
(t))]

where

τar
1
(t) = t + dar

1
[xar

1
(t)] ∀r ∈ R

τar
i
(t) = τar

i−1
(t)+dar

i
[xar

i
(τar

i−1
(t))] ∀ r ∈ R, i ∈ [2,m(r)].
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SRD Equilibrium (cont.)

• Travelers may arrive early or late but incur a sched-

ule cost.

α is the dollar penalty for early arrival.

β is the dollar penalty for late arrival.

[T ∗ − ∆, T ∗ + ∆] is the set of “equally accept-
able”arrival times.

• The schedule cost is given by

Φr(t, h) =




α[(T ∗ − ∆) − (t + dr(t, h))] if (T ∗ − ∆) > [t + dr(t, h)]

0 if (T ∗ − ∆) ≤ [t + dr(t, h)] ≤ (T ∗ + ∆)

β[(t + dr(t, h)) − (T ∗ + ∆)] if (T ∗ + ∆) < [t + dr(t, h)],

• Letting γ denote the value of travel time, total cost
is given by

cr(t, h) = γdr(t, h) + Φr(t, h) ∀ r ∈ R
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SRD Equilibrium (cont.)

Letting µr(h) = ess inf{cr(t, h) : t ∈ [0, T ]} the rele-
vant lower bound on achievable costs for a w-commuter

is given by µw(h) = min{µr(h) : r ∈ Rw} we can define
an equilibrium as follows:

Definition 1 (SRD Equilibrium) A departure rate

pattern, h ∈ HD is said to be a simultaneous route and

departure-time choice equilibrium (SRD equilibrium) for

D if and only if (iff) h satisfies the following condi-

tion for all w ∈ W , and r ∈ Rw:

hr(t) > 0 =⇒ cr(t, h) = µw(h)

for ν-almost all t ∈ [0, T ]
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SRD Equilibrium (cont.)

• It is possible to formulate the SRD equilibrium prob-
lem as an infinite dimensional variational inequality:

Theorem 1 A departure rate pattern, ĥ ∈ HD is

an SRD equilibrium for c if and only if

∑
r∈R

∫ T

0
cr(t, ĥ)[hr(t)− ĥr(t)]dν(t) ≥ 0 (1)

for all h ∈ HD.

• This result is quite general, and does not depend on
the form of da or cr.

• This result allows us to consider questions of exis-
tence and solution algorithms.
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The Big Open Questions

• SRD Equilibrium:
Existence and Uniqueness

Efficient Algorithms

• Information Provision:
How will users respond to traffic forecasts?

How do we incorporate their reponses into our

forecasts?


