
Chapter 2
Event-Driven Programming

The Design and Implementation of
Multimedia Software

David Bernstein

Jones and Bartlett Publishers

www.jbpub.com

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 1 / 45



Introduction

About this Chapter

• Good designs are adequate, rugged, easy to repair/enhance, easy
to understand/document, and have components that are easy to
re-use.

• This book is predicated on the belief that object-oriented
techniques help lead to designs with these properties.

• However, for multimedia software, object-oriented techniques on
their own are often not enough.

• Hence, this chapter considers how an event-driven design can help
ensure that multimedia software has these desirable properties.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 2 / 45



Introduction

Motivation

• Most introductory programming and design courses focus on
software products that follow a ‘step-by-step’ process.

• Most multimedia software products cannot be
described/conceptualized in this way.

The software needs to respond to various user actions (e.g., mouse
clicks, key presses) that might occur in any order and at any time.

The software needs to do multiple things ‘at the same time’ (e.g.,
present visual and auditory content, present multiple tracks of
auditory content).

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 3 / 45



Event-Driven Designs

What’s Next?

We need to consider event-driven design and programming.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 4 / 45



Event-Driven Designs

Focus of Event-Driven Designs

• The events that can occur (e.g., mouse clicks, timing signals, key
presses);

• The classes that can generate events of different kinds (often called
event generators); and

• The classes that need to respond to events of different kinds (often
called event receivers).

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 5 / 45



Event-Driven Designs

The Event Queue

• The event queue is responsible for ensuring that everything
happens in the right order.

• The event queue is a central repository for events.

Event generators add events to the back of the queue (a process
known as posting).

Event receivers are sent events as they are removed from the front
of the queue (a process that is known as firing or dispatching).

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 6 / 45



The Event Queue and Dispatch Thread in Java

What’s Next?

We need to consider the event queue and dispatch thread in Java.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 7 / 45



The Event Queue and Dispatch Thread in Java

The Java EventQueue

• Events are managed by a single EventQueue object.

• The EventQueue object fires events using the dispatchEvent()
method.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 8 / 45

http://java.sun.com/javase/6/docs/api/java/awt/EventQueue.html


The Event Queue and Dispatch Thread in Java

The Event Dispatch Thread

• Events are dispatched in a single event dispatch thread.

• There are two closely related ways to execute statements in the
event dispatch thread (both involve static methods in the
SwingUtilities class that are passed a Runnable object).

The invokeAndWait() method blocks until all pending events have
been processed.

The invokeLater() method adds the call to the Runnable object’s
run() method to the end of the event queue and returns
immediately.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 9 / 45

http://java.sun.com/javase/6/docs/api/javax/swing/SwingUtilities.html
http://java.sun.com/javase/6/docs/api/java/lang/Runnable.html


GUIs and GUI Events

What’s Next? GUIs

• They are a nice way to experiment with event-based programming

• We will need to use them to present visual content

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 10 / 45



GUIs and GUI Events Components

JLabel

• Displays a String, an Icon or both.

• The alignment of a JLabel object’s content can be controlled with
the setHorizontalAlignment() and setVerticalAlignment()

methods, both of which must be passed an int value (defined in
SwingConstants).

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 11 / 45

http://java.sun.com/javase/6/docs/api/javax/swing/Icon.html
http://java.sun.com/javase/6/docs/api/javax/swing/JLabel.html
http://java.sun.com/javase/6/docs/api/javax/swing/SwingConstants.html


GUIs and GUI Events Components

JLabel (cont.)

label = new JLabel(s, SwingConstants.CENTER);

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 12 / 45



GUIs and GUI Events Components

JButton

• A JButton is a GUI component that behaves like a key on the
keyboard.

• Like a JLabel, it can contain a String, an Icon, or both.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 13 / 45

http://java.sun.com/javase/6/docs/api/javax/swing/JButton.html


GUIs and GUI Events Components

JButton (cont.)

button = new JButton(CHANGE);

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 14 / 45



GUIs and GUI Events Components

Other Components

• JCheckBox

• JList

• JSlider

• JSpinner

• JTextArea

• JTextField

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 15 / 45

http://java.sun.com/javase/6/docs/api/javax/swing/JCheckBox.html
http://java.sun.com/javase/6/docs/api/javax/swing/JList.html
http://java.sun.com/javase/6/docs/api/javax/swing/JSlider.html
http://java.sun.com/javase/6/docs/api/javax/swing/JSpinner.html
http://java.sun.com/javase/6/docs/api/javax/swing/JTextArea.html
http://java.sun.com/javase/6/docs/api/javax/swing/JTextField.html


GUIs and GUI Events Containers

Types of Containers

• Top-Level Containers

• Ordinary Containers

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 16 / 45



GUIs and GUI Events Containers

Top-Level Containers

Constructing a JFrame

window = new JFrame();

window.setSize(600,400);

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 17 / 45

http://java.sun.com/javase/6/docs/api/javax/swing/JFrame.html


GUIs and GUI Events Containers

Top-Level Containers (cont.)

• Though top-level containers are containers they should not be
used directly in that way.

• Instead, one should get the root pane (which is, itself, a container)
from the top-level container and use it.

• To that end, all top-level containers implement the
RootPaneContainer interface which includes a getRootPane()

method that returns a JRootPane.

• In fact, one should use the content pane (that is inside of the root
pane) which can be obtained using the getContentPane() method
of the JRootPane (or the getContentPane() method of the
RootPaneContainer)

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 18 / 45

http://java.sun.com/javase/6/docs/api/javax/swing/RootPaneContainer.html
http://java.sun.com/javase/6/docs/api/javax/swing/JRootPane.html


GUIs and GUI Events Containers

Ordinary Containers

Getting the Content Pane (which is a JPanel)

contentPane = (JPanel)window.getContentPane();

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 19 / 45

http://java.sun.com/javase/6/docs/api/javax/swing/JPanel.html


GUIs and GUI Events Layout

Layout Basics

• Definition:

The process of positioning and sizing the components in a container.

• Approaches:

Use a LayoutManager

Use absolute layout (sometimes called null layout).

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 20 / 45

http://java.sun.com/javase/6/docs/api/java/awt/LayoutManager.html


GUIs and GUI Events Layout

Absolute Layout

Getting Started

contentPane.setLayout(null);

Setting-up the JLabel

label.setBounds(50,50,500,100);

contentPane.add(label);

Setting-up the JButton

button.setBounds(450,300,100,50);

contentPane.add(button);

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 21 / 45



GUIs and GUI Events A Simple Example with a GUI

BadRandomMessageExample

import java.util.*;

import javax.swing.*;

public class BadRandomMessageApplication

{

// The pseudo-random number generator

private static Random rng = new Random();

// The messages

private static final String[] MESSAGES = {

"What a great book.","Bring on the exercises.",

"Author, author!","I hope it never ends."};

public static void main(String[] args) throws Exception

{

JFrame window;

JLabel label;

JPanel contentPane;

String s;

// Select a message at random

s = createRandomMessage();

// Construct the "window"

window = new JFrame();

window.setSize(600,400);

window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 22 / 45



GUIs and GUI Events A Simple Example with a GUI

BadRandomMessageExample (cont.)

// Get the container for all content

contentPane = (JPanel)window.getContentPane();

contentPane.setLayout(null);

// Add a component to the container

label = new JLabel(s, SwingConstants.CENTER);

label.setBounds(50,50,500,100);

contentPane.add(label);

// Make the "window" visible

window.setVisible(true);

}

private static String createRandomMessage()

{

return MESSAGES[rng.nextInt(MESSAGES.length)];

}

}

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 23 / 45



GUIs and GUI Events A Simple Example with a GUI

A Problem

• The main() method manipulates elements of the GUI outside of
the event dispatch thread (i.e., in the main thread).

• One can correct this problem using the invokeAndWait() method
in the SwingUtilities class.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 24 / 45



GUIs and GUI Events A Simple Example with a GUI

Fixing the Problem

Indicate that the Class is Runnable
public class BadRandomMessageSwingApplication

implements Runnable

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 25 / 45



GUIs and GUI Events A Simple Example with a GUI

Fixing the Problem (cont.)

Move Code into the run() Method
public void run()

{

JFrame window;

JPanel contentPane;

String s;

// Select a message at random

s = createRandomMessage();

// Construct the "window"

window = new JFrame();

window.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

window.setSize(600,400);

// Get the container for all content

contentPane = (JPanel)window.getContentPane();

contentPane.setLayout(null);

// Add a component to the container

label = new JLabel(s, SwingConstants.CENTER);

label.setBounds(50,50,500,100);

contentPane.add(label);

// Make the "window" visible

window.setVisible(true);

}

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 26 / 45



GUIs and GUI Events A Simple Example with a GUI

Fixing the Problem (cont.)

Fix the main() Method
public static void main(String[] args) throws Exception

{

SwingUtilities.invokeAndWait(

new BadRandomMessageSwingApplication());

}

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 27 / 45



GUIs and GUI Events GUI Event Handling

Low-Level and High-Level Events

• Using a Button (Low-Level):

1. A mouseEntered() message is generated.

2. A mousePressed() message is generated.

3. A mouseReleased() message is generated.

4. A mouseClicked() message may be generated.

• Using a Button (High-Level):

1. The button generates a high level event.

2. The event queue fires to the listeners/observers.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 28 / 45



GUIs and GUI Events GUI Event Handling

The JButton Class

• The Event:

ActionEvent

• The Observers/Listeners:

Implement the ActionListener interface.

Subscribe using the addActionListener() method.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 29 / 45

http://java.sun.com/javase/6/docs/api/java/awt/event/ActionEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/event/ActionListener.html


GUIs and GUI Events GUI Event Handling

Other Events in Java

• MouseEvent

• KeyEvent

• ItemEvent

• TextEvent

• WindowEvent

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 30 / 45

http://java.sun.com/javase/6/docs/api/java/awt/event/MouseEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/event/KeyEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/event/ItemEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/event/TextEvent.html
http://java.sun.com/javase/6/docs/api/java/awt/event/WindowEvent.html


GUIs and GUI Events An Example with a GUI and Event Handling

Handling Messages

public void actionPerformed(ActionEvent event)

{

String actionCommand;

actionCommand = event.getActionCommand();

if (actionCommand.equals(CHANGE))

{

label.setText(createRandomMessage());

}

}

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 31 / 45



GUIs and GUI Events An Example with a GUI and Event Handling

Setting-Up the JButton

button = new JButton(CHANGE);

button.setBounds(450,300,100,50);

contentPane.add(button);

button.addActionListener(this);

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 32 / 45



Timed Events

What’s Next?

We need to consider timed events.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 33 / 45



Timed Events

Types of ‘Clock-Based’ Events

• Events that occur at a particular point in time;

• Events that occur after a particular interval of time;

• Events that recur after a particular interval of time (called
fixed-delay execution); and

• Events that recur at a particular rate (called fixed-rate execution).

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 34 / 45



Timed Events Implementing a Metronome Class

Design of a Metronome

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 35 / 45



Timed Events Implementing a Metronome Class

Alternative Ways to Manage Listeners

Use a thread-safe collection.

What are the shortcomings?

Make a copy of the collection of listeners and use the copy for
notification.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 36 / 45



Timed Events Implementing a Metronome Class

Alternative Ways to Manage Listeners

Use a thread-safe collection.

The shortcoming is that notification process could be delayed by
modifications to the collection of listeners.

Make a copy of the collection of listeners and use the copy for
notification.

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 36 / 45



Timed Events Implementing a Metronome Class

Managing Listeners (cont.)

public synchronized void addListener(MetronomeListener ml)

{

listeners.add(ml);

copyListeners();

}

private void copyListeners()

{

copy = new MetronomeListener[listeners.size()];

listeners.toArray(copy);

}

public synchronized void removeListener(MetronomeListener ml)

{

listeners.remove(ml);

copyListeners();

}

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 37 / 45



Timed Events Implementing a Metronome Class

Calling handleTick() in the Event Dispatch Thread

The Runnable to Pass to invokeLater()
private class MetronomeTickDispatcher implements Runnable

{

private MetronomeListener[] listeners;

private int time;

public void run()

{

int n;

n = listeners.length;

for (int i=n-1; i>=0; i--)

{

if (listeners[i] != null)

listeners[i].handleTick(time);

}

}

public void setup(MetronomeListener[] listeners,

int time)

{

this.listeners = listeners;

this.time = time;

}

}

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 38 / 45



Timed Events Implementing a Metronome Class

Calling handleTick() (cont.)

The notifyListeners() Method
protected synchronized void notifyListeners()

{

// Setup the state of the MetronomeTickDispatcher

dispatcher.setup(copy, time);

// Cause the run() method of the dispatcher to be

// called in the GUI/event-dispatch thread

EventQueue.invokeLater(dispatcher);

}

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 39 / 45



Timed Events Implementing a Metronome Class

The start() Method

public void start()

{

if (timerThread == null)

{

keepRunning = true;

timerThread = new Thread(this);

timerThread.start();

}

}

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 40 / 45



Timed Events Implementing a Metronome Class

The run() Method

public void run()

{

int currentDelay;

long currentTick, drift;

currentDelay = delay;

if (adjusting) lastTick = System.currentTimeMillis();

while (keepRunning)

{

try

{

Thread.sleep(currentDelay);

time += currentDelay * multiplier;

if (adjusting) // Need to compensate for drift

{

currentTick = System.currentTimeMillis();

drift = (currentTick - lastTick) - currentDelay;

currentDelay = (int)Math.max(0, delay-drift);

lastTick = currentTick;

}

notifyListeners();

}

catch (InterruptedException ie)

{

// stop() was called

}

}

timerThread = null;

}
David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 41 / 45



Timed Events A Simple Example with Timed Events

The Structure

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 42 / 45



Timed Events A Simple Example with Timed Events

The run() Method

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 43 / 45



Timed Events A Simple Example with Timed Events

The handleTick() Method

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 44 / 45



Timed Events A Simple Example with Timed Events

The actionPerformed() Method

David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett 45 / 45


	Introduction
	Event-Driven Designs
	The Event Queue and Dispatch Thread in Java
	GUIs and GUI Events
	Components
	Containers
	Layout
	A Simple Example with a GUI
	GUI Event Handling
	An Example with a GUI and Event Handling

	Timed Events
	Implementing a Metronome Class
	A Simple Example with Timed Events


