
An Approach for Solving Java Object Persistence
Issues using RDBMS and other Data Sources

Adomas Svirskas1,2, Jurgita Sakalauskaite2

1SAP Systems Integration AG, Business Software Products
D-71691 Freiberg am Neckar, Germany
adomas.svirskas@sap.com

1 Department of Computer Science, Faculty of Mathematics and Informatics, Vilnius
University

LT2600 Vilnius, Lithuania
{adomas.svirskas, jurgita.sakalauskaite}@maf.vu.lt

Abstract. This paper summarizes experience gained designing, developing,
reusing and refining Java based persistence framework. Authors describe
their approach for abstracting operations with data sources under Java
interfaces. The paper discusses issues of object-relational mapping issues and
presents a solution. The key decisions as connection management,
independence from database structure, mass instantiation of persistent objects
using object factories and load balancing are discussed. A short review of the
related work in this area is provided.

1 Introduction

Perhaps one of the most important issues for many applications is convenient access
to external data sources. Historically, the most common data source type is relational
database, but there is considerable variety of other types of data sources, which are
quite different in terms how data is stored and accessed. There are two main problem
areas – the manipulation of the existing data, and the persistence of the run-time
objects. These areas are often tightly coupled – tables in relational database are often
used to store application entities and, on the other hand, some run-time entities are
stored in a different kind of external storage - Lightweight Directory Access Protocol
(LDAP) server, for example. Since there is a great deal of interaction with database,
both for object persistence and data access, there is a need for the convenient
persistence framework, abstract enough to be reusable independently of the particular
application logic and the external data source type. This framework should provide
interfaces to obtain a connection to a data store, create, retrieve, update and delete
persistent entities. Implementation of this interface should also be independent of
changes in the database layout.

We have designed persistence frameworks in Java and in CORBA and
implemented them on top of JDBC - relational database middleware of choice for our
applications. These frameworks are able to encapsulate data source-dependent
implementation under uniform interface. Later we expanded the implementation of

our framework by adding classes for an interaction with LDAP services and we have
plans to implement access to the XML-based storage using the same interface.

This paper is organized as follows: Section 2 identifies the main issues and reasons,
which caused our framework development effort; Section 3 describes design and
implementation in detail; Section 4 is dedicated for brief overview of related work;
and Section 5 provides concluding remarks.

Usage of the relational database metadata allowed us to develop implementation,
which is independent of RDBMS table structure. The Factory pattern is used to obtain
the results of the queries against the databases. The set of application objects is
produced based on SQL or other type of (LDAP, for example) queries. There is also a
possibili ty to specify a set of the so-called data sinks for a factory. We can define data
sink as an object, which is able to consume and process a single data item from the
query result set. Each sink class implements uniform interface and encapsulates the
logic of the data item conversion to some alternative representation. Sink is supplied
with the data transformation object, which is in charge of the actual further
presentation of the data. Thus, an item of the query result set can be passed to the
array of sinks and directed to different destinations, if necessary.

Figure 1 shows part of UML class diagram of our persistence framework. We also
use very simple connection pooling mechanism, which allows more efficient usage of
database connections. Modern application servers provide connection pooling, some
JDBC 2.0 drivers (e.g. Oracle) provide connection pooling at drivel level. In these
cases, of course, one should use one of the mentioned mechanisms. Our simple
pooling technique can be useful in other situations when there is no application server
or JDBC driver support.

2 The issues

2.1 High-level functional requirements

It was our opinion that the following issues were crucial to deal with: uniform
interfaces as much independent from data store type as possible (JDBC, LDAP and
some other interfaces, such as Informix early-times proprietary Java Object
Interface, were important to deal with); data store connection management –
establishment, closing, transactions; persistent object li fecycle – creation, read, update
and delete (CRUD) operations; mass creation objects from data stores usage of them
or their attributes (e.g. search operations). Load balancing of database operations in
distributed object environments emerged as an important task a littl e later.

2.2 Data source related issues

Despite the fact that the framework has been designed with the independence from
data store type in mind, JDBC-compliant data stores captured the most of attention
and efforts. While JDBC itself is quite convenient and simple set of interfaces, the
actual implementations tend to deviate from the standard by providing proprietary

extensions in some cases or postponing certain important implementations (e.g.
metadata) until better times. This led to quite cumbersome task of balancing between
temptations to use the proprietary vendor extensions and the complexity of
encapsulating little differences into our own abstractions. Particular areas of concern
were: metadata (as mentioned earlier) and mappings of SQL data types to JDBC data
types, processing of BLOB/CLOB data, unique incremental ID’s. It was diff icult to
isolate our development efforts from vendor-specific decisions because of the fact that
JDBC drivers from different vendors were not at the same stage of maturity, we had
project-related priorities, etc. Our first JDBC-compliant DBMS was Informix
Universal Server, thus many implementation decisions were influenced by this fact.
The good thing was that since the beginning of our development we were exposed to
the variety of JDBC drivers – we used two different implementations: we used one
from Weblogic at first and switched to native Informix driver later. This diversity
made us aware of the differences in JDBC URL’s and other subtle differences. This
laid out a good reusabili ty foundation and, despite considerable bias to Informix side,
making the framework Oracle-ready was manageable and proved basic validity of our
design decisions.
.

+connect
()+closeConnectio
n()+commit
()+rollback
()+getNativeConnecti
on()

«interface
»DBConnecti

on

+save(
)+retrieve
()+delete
()

«interface
»PersistentObj

ect

+createDBObjec
ts()+setMaxResultsToRet
urn()

«interface
»DBObjectFact

ory

+setModifie
r()+modifyIt
()

«interface
»LDAPObjectInterf

ace

+assignColumnVal
ue()

«interface
»JDBCObjectInterf

ace

+getColumnValu
e()+setColumnValu
e()+getDBTableNa
me()

«interface
»DBObjectInterf

ace

+setConnectio
n()+getConnectio
n()+supportsConnectionT
ype()

«interface
»Connectab

le

+getConnectio
n()

ConnectionMana
ger

+getConnectionTy
pe()

DBConnectionInitial
izer

JDBCConnecti
on

NativeConnecti
on

LDAPDBConnect
ion

+getColum
n()

JDBCTab
le

+toString
()

-
ReadOnl
y
-
Hidden-
NotNull

JDBCColu
mn

JDBCObjectFactory
Base

LDAPObjectFactory
Base

+getTableInf
o()+getColumnSetIn
fo()

JDBCMetaD
ata

JDBCObjectInterface
Base

LDAPObjectInterface
Base

0..*
0..*

1
0..*

0..1

1

1

0..*

1..*

0..*

1..*

0..*

1

1..*

0..*

0..* 0..*

0..*

0..*

0..*

1..*

0..*

Fig. 1. UML class diagram of object persistence framework described in this paper

On the other hand, the decision to use a uniform set of interfaces for JDBC and
non-JDBC data stores proved itself, there were no big problems despite the fact that
LDAP, for example, and JDBC are quite different in nature. The big advantage was
unified procedure of mass creation of objects from these types of data stores by using
the factory pattern. Each type of factories differed form each other in terms of
specifying search criteria, but the procedure of obtaining results was identical. LDAP
implementation also provided the same support for CRUD operations as the one of
JDBC.

3 Proposed solutions

One of the main tasks was to find the right level and granularity of abstractions for
our persistence framework. We needed to shield ourselves from tedious task of
dealing with underlying storage system details, yet we kept in mind simplicity and
efficiency. All our abstractions fall into these main categories: connection
management, persistent business objects, object factories. Below we describe our
design decisions and explain usage of our framework.

3.1 Connection management

Before doing anything else with a data store, an application must establish a
connection to it. This action is quite tedious because it is time consuming, resource
intensive and depends on a set of parameters such as network address, port, data store
name, etc., which should be specified in storage-type and vendor dependent form (e.g.
JDBC URL). That said, it is clear that one would like to encapsulate connection
handling into reusable components for the convenience of data store related
applications.

We have introduced the ConnectionManager class, which is responsible for
creating a data store connection. This class has the only method getConnection, which
creates a connection based on the information contained in its parameter of
DBConnectionInitializer type. The method mentioned above arranges connection
related properties into the right sequence and format depending on the underlying data
storage mechanism. For example, JDBC URL’s for different types of databases have
different format, LDAP does not have URL at all , etc.

The result of an invocation of the getConnection method is an instance of the
DBConnection type. The main decisions to introduce this interface were the need to
have uniform interface for different types of connections and the idea to have a
connection, which would re-bind itself to the data store in case of connection loss
(network-related errors, restart of data store manager, etc.). The interface mentioned
above provides methods to establish a connection, close it and begin/end transactions.
Of course, it was not our goal to mimic all methods from all possible connection types
in our interface in our DBConnection interface, so we introduced the
getNativeConnection method to get access to the underlying data store connection.
Applications can use this feature when necessary, however, in this case they are
responsible for handling connection-related exceptions.

It is our opinion that our data store connection establishment approach is quite
simple and flexible – it is encapsulated in the ConnectionManager, which knows how
to get obtain the particular connection. The rest of application is shielded from these
details. When we introduced our framework, most connections to JDBC data sources
were obtained directly via JDBC DriverManager. Currently the more common case is
to obtain these connections from application server via JNDI, which is completely
transparent to clients of our framework. It takes only to introduce a new set of
properties for DBConnectionInitializer and add the proper handling for the new type
of connection.

One more important aspect of connection management is connection pooling, i.e.
maintaining a number of open connections to data source, instantiating them on
demand, closing after some inactivity period, etc. We have introduced a very simple
connection pooling class DBConnectionPool, which is capable to maintain a pool of
connections for data sources without other pooling mechanisms. Currently data source
connection pooling has become a standard feature of most application servers or even
JDBC drivers (e.g. latest Oracle JDBC drivers), therefore our pooling mechanism is
not used heavil y.

The particular implementations of DBConnection interface are JDBCConnection
LDAPDBConnection classes. They slightly differ from each other in operation set -
authentication is a separate method in LDAPDBConnection, for example, LDAP
connection does not support transactions, etc. The general was to place only the most
common operations into the generic interface and leave specific features to the
particular implementations.

One last connection-related feature of our framework to mention is the
Connectable interface, which allows setting, obtaining and verifying the type of
supported connection. All classes, which implement this interface, can accept
DBConnection from outside, so they are independent from particular connection and
do not need to establish it themselves.

3.2 Persistent objects and operations with these objects

Connection management is very important aspect of any persistence framework,
however it is only supporting functionali ty. The main task is to cope with so called
"impedance mismatch" between the database and object-oriented application. While
most developers still need to know and understand SQL, use it for many different
tasks, the goal is to eliminate routine database operations for typical persistence needs
and to provide object-relational mapping between objects and relational database.

First of all , it is necessary to deal with the lifecycle of an object – creation, reading,
update, and delete (CRUD) operations. Our approach was to introduce the
PersistentObject interface, which defines all the operations, mentioned above. This is
too generic, however, for real object-relational or other storage mappings, so there are
more specific interfaces DBObjectInterface and JDBCObjectInterface, suited for
RDBMS specific mappings.

The main design idea behind the mapping solutions of our framework was to make
these mapping as independent from changes in database structures, as reasonably
possible. Client applications should be able to access object data via get/set type

methods using column names. This is reasonable, because the client still needs to
know the semantics of table structure, i.e. what application-domain meaning has a
column. The technical details like conversion from SQL and JDBC types to regular
Java, dealing with ResultSet objects, etc. is up to the framework. Let us discuss in
greater detail how this goal is achieved.

We decided to make our persistent objects application-oriented, as explained in the
previous paragraph, but database-driven. This means that persistent object is
constructed providing database table name and there is mechanism to obtain structure
of the table in order to establish set of attributes for the object. Mechanism of
obtaining table structure is built on having the JDBCMetaData class, which is
responsible for providing the metadata (names and types of columns) for persistent
objects. Metadata is cached on per-table basis, so there is no need to extract it multiple
times. Of course, this makes our framework vulnerable to data structure changes, it is
necessary to restart the application if structure of tables changes. Obtaining metadata
is somewhat tricky, it was mentioned earlier that some JDBC drivers did not
implement this part of the JDBC Standard readily. This leads to the usage of vendor-
dependent information such as system tables and data type codes and it is not very
elegant solution. Nevertheless, this approach worked for us when dealing with
Informix and Oracle, thus, it is feasible to get metadata even using incomplete JDBC
implementations.

Another important part besides attribute-like access to data fields is generating of
SQL statements for CRUD operations. This kind of functionality has been
encapsulated into the default implementation of the JDBCObjectInterface – the
JDBCObjectInterfaceBase class. Normally these statements are used inside the
implementation of the latter class, but there is a possibili ty to get them for
troubleshooting and debugging purposes.

The code snippet below shows how easy is to instantiate and save a new object.
There is no need at all to worry about SQL statements and keeping them up-to-date
when the structure of a table changes. The method save of the PersistentObject
interface automatically results in SQL INSERT statement the first time object is saved
and SQL UPDATE statement each time afterwards. It is also possible to delete
desired object using delete method or revert to the database image using retrieve
method.

Hashtable col_info = dbFactory.getMetaDataInfo("customeragent");

JDBCObjectInterfaceBase dbobj = new

JDBCObjectInterfaceBase("customeragent", col_info, true, false);

dbobj.setConnection(dbFactory.getConnection(), true);

dbobj.setColumnValue("cust_id", new BigDecimal(cid));

dbobj.setColumnValue("agnt_id", new BigDecimal(agid));

dbobj.setColumnValue("approved_tf", agent.isPrivate() ? "F" : "T");

dbobj.save();

An important thing not visible in this code example is unique ID of a persistent
object. There are different possibili ties to generate this “magic” number. It is possible
to use SQL SELECT to get the maximum value of the primary key, increment it and
use as the ID of the new object. This approach is not the best, however – it takes
additional database access to obtain the maximum value, it depends on the isolation
level of an application, etc. Another approach is to use vendor specific data types (e.g.
SERIAL of Informix) and leave this function to a DBMS. This approach is even
worse, since it leads to vendor lock-in, as these automatic counter types are non-
standard. We do not claim that it is always the best practice to avoid vendor
extensions, in some cases it is inevitable, but in this case there is more eff icient,
elegant and portable solution. We took quite common approach to generate unique ID
as a function of timer and some random number. This results in 19 byte-length
numbers, which contains year, ordinal number of the day, hour-to-mill isecond and
three-digit random number. It is kept as string in database table. While this is by no
means ideal algorithm, it served us well in many projects. There are recommendations
to use 16 bytes for this purpose and to have two parts for an ID: so-called factory
number and ID number (similar to the approach taken by manufacturers of network
interface cards). Skeptics can point out that these approaches waste space, but
somebody was very considerate about space years ago, which resulted in Y2K
problem. It is our opinion that our approach has a useful feature of keeping track of
the time of table entry creation.

Another implementation of persistent objects is based on LDAP services. It is
much more simple and straightforward, mainly because LDAP repository is object-
oriented itself. Therefore, the LDAPObjectInterface and its default implementation,
the LDAPObjectInterfaceBase do not require complex manipulations with metadata,
etc. Identification of an entity is not a problem, since it is open and explicit – every
LDAP entry must have its distinguished name – DN. Operations with LDAP-based
persistent objects mainly differ from those with JDBC in the way updates are done. In
LDAP case there are certain rules how to prepare attribute changes, but these things
are quite straightforward. The main benefit of having LDAP implementation of the
interfaces mentioned above is the possibili ty to work using the same abstractions with
objects of different nature. This is especially true when mass creation of objects from
data store takes place, because instantiation of a single LDAP-based persistent object
is quite different from the JDBC:

LDAPObjectInterfaceBase principal =

 new LDAPObjectInterfaceBase (new netscape.ldap.LDAPEntry(dn));

principal.setConnection(ldapFactory.getConnection(), true);

netscape.ldap.LDAPModificationSet mods = new

netscape.ldap.LDAPModificationSet();

netscape.ldap.LDAPAttribute attr = new

netscape.ldap.LDAPAttribute("userpassword", password);

mods.add(netscape.ldap.LDAPModification.REPLACE, attr);

principal.modifyIt (mods);

3.3 Object factories and processing modes of persistent objects

It is very common situation when application needs to retrieve series of objects based
on some application-dependent criteria. These criteria can be SQL SELECT
statements, LDAP queries, XML XPath expressions, etc. For the convenience and
simplicity of this kind of operations we introduced quite intuitive object factory
interfaces. Implementations of these interfaces take care of performing necessary
interactions with underlying data store mechanisms and instantiating persistence-
capable objects. Let us examine these interfaces more closely.

DBObjectFactory interface (it extends Connectable) is the main interface, which
defines factory-type operations of our framework. There are several methods
createDBObjects, which are used most frequently when there is a need to retrieve data
items and produce DBObjectInterface type objects. It is possible to specify the
maximum number of objects to be created and the number data items to be skipped.
The latter feature is useful when it is necessary to deliver results of a query in portions
(e.g. multi-page search).

Vector productList = dbFactory.createDBObjects

("Select * from product where cust_id = "+cust_ID,

prodsPerPage,(iPage)*prodsPerPage);

The code snippet above ill ustrates most straightforward use of object factory. A
vector of created objects is returned to the client application and it is up to the
application to process these objects. This scenario is not always the best, however.
Sometimes retrieved data items should be immediately processed, before or in parallel
with the retrieval of subsequent data items, which satisfy the retrieval criteria. A good
example is an application, which delivers full-text search results via WWW. The end
user would be much more delighted if they could see the first results of their search as
soon as they are retrieved, rather than wait for the query to end before seeing
anything. Another example would be a need to direct retrieved data items to multiple
destinations simultaneously. These functions would not be possible using the example
above.

In order to facilit ate the functionality described above, we have introduced a
possibili ty to attach an arbitrary number of data consumers to the DBObjectFactory
object dynamically. The DBFactoryResultSink interface is capable to consume
retrieved data items, as its name suggests. Instances of the classes, which implement

this interface, can be added to the DBObjectFactory via addResultSink method. It is
also possible to delete all or a particular sink from a factory, and specify a set of
allowed sink types – classes implementing the DBFactoryResultSink interface.

When data item is retrieved by DBObjectFactory implementation from data store,
it is passed to all registered sinks by invoking their acceptDataItem method:

public boolean acceptDataItem (DBObjectInterface DBObject,

Boolean fLastItem) throws DataProcessingException;

Thus data sink gets control and can process the object, which is passed. It is up to
data sink implementation to define further semantics of processing. Our current
implementations of data sinks are synchronous, i.e. object factory waits for the
completion of data object processing, but nothing prevents a sink from initiating an
asynchronous action and returning control to the factory.

The users of WWW based search/retrieval system were satisfied when the results
of their queries started to appear on the browser screen sooner than all results of the
query were processed.

3.4 Instantiation of the persistent objects

Having explained the anatomy of DBObjectFactory in general, we can take a closer
look at the process of creation of these objects. Here is the place where
implementations become data store type dependent. RDBMS-related implementation
deserves the most attention, since it is most commonly used and more complex. So we
in the first place we will discuss the design and implementation solutions of JDBC-
based JDBCObjectFactoryBase class.

There are two main possibilities to retrieve data items from RDBMS: to specify an
arbitrary SQL SELECT statement or to specify a table name and, most likely, a
WHERE clause. The latter scenario is the special case of the former, however, we
decided to abstract it into separate overloaded method. This decision has been made in
order to provide more convenient interface for single-table retrievals and to be able to
distinguish between read-only and updateable retrievals. In any case, one of the main
goals is independence from DBMS table structure or SQL SELECT statement during
object instantiation and retrieval of column values, as it was the case designing
persistence support for individual objects.

This independence is achieved again through the usage of metadata (column names
and data types) in both cases. In case of arbitrary SQL select statement the metadata is
extracted from JDBC ResultSet, in case of single-table retrieve, the metadata is
extracted from a database. The metadata information is encapsulated into an instance
of JDBCMetaData class. Extraction of metadata for the same table is done once and
then the metadata is cached in an instance of JDBCMetaData. This information is
shared between object factories and individual object persistence mechanism.
Metadata for each table is stored as a collection of instances of the JDBCColumn
class. This class provides a possibili ty to customize processing of individual columns
by specifying flags read-only, not null , hidden, etc.

Sometimes it is desirable to have more business-specific object class as a basis for
persistent operations. It is possible to do using aggregation, i.e. having
PersistentObject type object inside the business object, however we provide the
NamedDBObjectFactory class, which has setDBObjectClass method to specify the
class of business objects to be created from data items. A class passed as a parameter
of the method, mentioned above, must extend DefaultNamedJDBCObject class. By
using this feature it is possible to have a hierarchy of application-specific persistent
objects.

3.5 De-coupled database operations

Another important persistence-related issue is where to concentrate the processing
activities of database interactions, since they mostly are resource hungry. Sometimes
it is highly desirable to have a possibili ty to relocate database processing to another
physical machine(s) when the workload grows.

+setup()
+addSQLStatement()
+getSQLStatements()
+setDBAction()
+getDBAction()
+setDefaultQueue()
+addTransactionMember()
+getTransactionMembers()
+executeTransaction()
+setWaitingForResults()
+isWaitingForResults()
+pushResults()

«interface»
DBOperable

+putNativeObject()
+getNativeObject()

«interface»
GenericObject

+createQueue()
+getQueueByName()
+getQueueByNameAndType()

«interface»
QueueManager

+putObject()
+putHighPriorityObject()
+getObject()
+indexOf()
+getObjectCount()
+getQueueName()
+getQueueType()

«interface»
ObjectQueue

+start()
+stop()
+setQueueName()

«interface»
DBQueryProcessor

+save()
+delete()
+retrieve()

«interface»
Persistent

0..* 0..*

0..*

1

0..*

0..*

0..*

0..*

0..*

Fig. 2. UML diagram of de-coupled database operations framework components

We have designed the distributed framework based on the producer-
consumer pattern, which uses queue-based mechanism to separate the producers and
the consumers. The main aim is to encapsulate the processing of all forms of database
operations – SELECT, UPDATE, DELETE statements, etc. Two essential parts of the
implementation are:

• CORBA object implementing specific interface (DBOperable), which contains
information needed for executing of the database operations – query or other SQL
statement to be executed, what results are to be returned, etc.

• CORBA object (DBQueryProcessor), which has the connection to the database and
can process objects implementing interface mentioned above.

The main goal is load balancing and the optimal usage of the system processing
power – it is possible to plug additional machines running instances of
DBQueryProcessor, they would connect to Queue Manager, obtain ObjectQueue
name and would participate in the query or, to be more exact, database operations
processing activity. Upon completion of database operation, DB processor returns
results to the client component via callback interface.

Object queue solution provides two different communication options:

• Communication via simple data structures – client just puts other objects or itself
into a queue, and processor of database operations (DBQueryProcessor) gets
them from it. Object queue has a possibili ty to accept objects only of specific
type, process objects with different priorities, etc. DBQueryProcessor also can
choose queue of specific type.

• Communication via encapsulated CORBA Event Service. DBQueryProcessor
objects register as pull consumers; some objects can register as push suppliers for
the specific event channel. One queue can have multiple Event Service channels.
The implementation of the queue encapsulates the creation of the channels, etc.
and exposes comprehensive interface for the clients.

In both cases, the object to be processed can initiate the database operation. This
can also be done by any other object, which would put an object, implementing
DBOperable into the particular queue.

«interface»
ObjectQueue

«interface»
QueueManager

«interface»
GenericObject

«interface»
DBQueryProcessor

getQueue
ByNameAndT

ype
()

getQueueByNameAndType()
putObject()

getObject()

Fig. 3. UML collaboration diagram of communication using queues

4 Related work

There are many different approaches to object persistence and object-relational
mapping problems ranging from implementations similar to ours to heavy and
expensive products. We are keeping an eye on the developments in this area for two
purposes – comparing work of others to our ideas and experiences and very pragmatic
need to find something better and more standard for our projects, since we are more
involved in development of business-oriented e-commerce systems, than in
infrastructure-level frameworks and components. Several years ago it was the
common practice to build many Java solutions in-house, however, the more mature
Java Platform gets, the more clear is separation of roles in Java developments - do one
thing and do it well . Having said that, let us take a look around.

As it was stated earlier, we are interested mostly in frameworks and products,
which provide object-relational or object-any-data-source mappings, contrary to the
type of products, which take care of object persistence only using serialization or
object-oriented databases. The main reason for this is the need to integrate with
existing databases, which in most cases are something more conservative than pure-
object repositories.

If we are interested in a Java-related solution, it is quite natural to check out the
area closest to the Sun, for obvious reasons. A couple of years ago Sun Microsystems
developed Java Blend persistence framework compliant with ODMG standard for
object relational mappings and object databases. Java Blend is sophisticated and
feature-rich product, which has interactive DB-object mapping tools, pre-processor,
supports Object Query Language (OQL), etc. Our framework does not come
anywhere near. However, it is our opinion, that Java Blend has several drawbacks.
The most important one is that Java Blend is a product, rather an open specification.
Conformance to the ODMG standard does not replace quite successful pattern when
Sun Microsystems with the help of area experts leads development of a specification,
and industry-leading companies provide implementations afterwards. The second
drawback is the price. With all respect to the importance of a top-notch persistence

solution, it is difficult to pay for Java-Oracle mapping middleware more than for
Oracle license itself. We could be wrong in license calculation for Java Blend, but
prices starting in the range of $80K are a littl e bit worrying. And if we remember
where ended Sun’s home grown Java IDE, we would not be the first to champion Java
Blend.

It seems, however, that Sun Microsystems had had doubts about Java Blend too
and came up with an alternative. This alternative was named Java Data Objects
(JDO) and the specification is under development within the Java Community Process
(JSR-00012). Its sole objective is to provide Java developers an object interface to
data stores. In the same way JDBC provides an industry standard way of accessing
data based on SQL, JDO is an industry standard way of accessing data based on Java
objects.

JDO approach is similar to our, it provides data access technique, which does not
require knowledge of underlying data store interface. JDO goes further by providing
query constructs, which are query language neutral. JDO also provides transparent
persistence via class enhancer that can process Java bytecode files and create a new
one with the necessary enhancements. It depends on JDO implementation whether
enhancement takes place at development time or during application run time.

JDO has been designed to work with Enterprise Java Beans, it provides transparent
persistence for entity beans, the class developers do not need to provide the
persistence support. With EJB session beans, the developer implements beans by
explicitly using JDO APIs.

Among areas of concern we could mention the lack of standardization for data
store-objects mapping. There are no significant implementations of JDO at this time;
Sun Microsystems recently released the reference implementation, which is
mandatory part to complete JCP specification effort.

An interesting implementation similar to JDO is Castor project by ExoLab Group.
Castor also provides Java-to-LDAP and Java-to-XML mappings.

Other vendors, such as Object Design, Inc. solve object persistence problem using
proprietary databases (PSE Pro/Java), which is an appealing approach when it is
desirable to separate object persistence repository and business database.

Secant Technologies, Inc. has developed Object Management Group OMG
Persistent Object Service based Secant Extreme Persistent Object Server for Java,
which bears solid architecture and well designed solutions.

Among the leaders of the Mapping Middleware (the layer between the application
server and the database) products is CocoBase product from Thought Inc. The
strength of it is in generating of entity beans from templates, freeing developers from
tedious tasks of persistence implementation. CocoBase is optimised to work with
most of leading application servers.

We believe that the strengths of our solution are simplicity, eff iciency, and usage
of standard RDBMS. Additional benefit is encapsulation of different data storage
types under the same interface.

5 Conclusions

It is our opinion that the time and effort spent developing and maintaining Java-
based object persistence framework were a good investment. While being relatively
simple, this framework is powerful and eff icient enough to serve everyday needs of
database-related Java applications. This framework was used in number of projects
(eight, to be more exact) and we have plans to rework and refine some parts of it to
make it up to date and ready for today applications.

The idea to develop such a framework came up after unsuccessful attempts to find
adequate commercial solution a few years ago. Success of the framework in numerous
projects served as an inspiration to share our ideas and examine our approach. It is our
opinion that despite the fact of much broader commercial and open-source product
choice today than few years ago, our framework is still applicable. It could be used for
solving bean-managed persistence issues in Enterprise Java Beans (EJB)
applications.

References

1. Ambler, S.W.: Complex Data Relationships: Bet on OODBMS. Software Magazine,
January 1995.

2. Ambler, S.W.: Mapping Objects to Relational Databases. Software Development, October
1995.

3. Ambler, S.W.: Object-Relational Mapping. Software Development, October 1996.

4. Ambler, S.W.: Mapping Objects to Relational Databases. URL:
http://www.ambysoft.com/mappingObjects.pdf, 1997.

5. Ambler, S.W.: The Design of a Robust Persistence Layer For Relational Databases: An
AmbySoft Inc. White Paper. http://www.ambysoft.com/persistenceLayer.html.

6. Atkinson, M.P., Bailey, P., Daynes, L., Printezis, T., Spence, S.: The Design of a new
Persistent Object Store for Pjama. The Second International Workshop on Persistence and
Java(tm) (PJW2), Half Moon Bay, Cali fornia, August 1997.

7. Atkinson, M.P., Daynes, L., Jordan, M.J., Printezis, T., Spence, S.: An Orthogonally
Persistent Java. ACM Sigmod Record, Volume 25, Number 4, December 1996.

8. Atkinson, M.P., Daynes, L., Jordan, M.J., Printezis, T., Spence, S.: Design Issues for
Persistent Java: a type-safe, object-oriented, orthogonally persistent system. Seventh
International Workshop on Persistent Object Systems (POS7) Cape May, New Jersey,
May 1996.

9. Brown, K., Whitenack, B.: Crossing Chasms: A Pattern Language for Object-RDBMS
Integration. Pattern Languages of Program Design 2, John M. Vlissides, J.M., Coplien,
J.O., Kerth, N.L., eds., Addison-Wesley, Reading, MA., 1996.

10. Close-up on JDO: a standard for persistence of Java business objects. TechMetrix
Research, February 2001, http://www.techmetrix.com/trendmakers/tmk0201/tmk0201-
3.php3.

11. Castor JDO: http://castor.exolab.org/jdo.html.

12. CocoBase: http://www.thoughtinc.com/cber_index.html.

13. Cocobase Enterprise O/R Business Benefits Whitepaper.

14. Dolgicer, M.: CORBA and Java: Marriage or just serious dating? Application
Development Trends magazine , January 1999.

15. Java Data Objects Specification. http://access1.sun.com/jdo.

16. Jordan, D.: An overview of Sun’s Java Data Objects specification. JavaReport. June
(2000).

17. Malani,P.: Connection Strategies in EntityBeans. JavaReport, April 2001.

18. Svirskas A., Sakalauskaite S.: Development of Distributed Systems with Java and
CORBA Issues and Solutions. DB&IS 2000, Vilnius.

19. The Object Data Standard: ODMG 3.0. http://www.odmg.org.

20. The Java Blend White Paper.
http://www.sun.com/software/javablend/whitepapers/index.htm.

21. Yoder, J.W., Johnson, R.E., Wilson, Q.D. : Connecting Business Objects to Relational
Databases. URL: http://www.joeyoder.com/Research/objectmappings/Persista.pdf.

