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Abstract

This paper presents the design of a new store layer for
PJama. PJama is a platform that provides orthogonal
persistence for Java1. Based on experience with a pro-
totype, PJama0, a new architecture has been devised
to permit incremental store management and to allow
a number of object management regimes to co-exist in
one store. It uses a plug-in model for composing a Java
Virtual Machine (JVM) with the persistent store and a
descriptor abstraction to limit the impact of changes in
JVMs on store management. Its anticipated advantages
over the current scheme include flexibility, adaptability,
scalability, and maintainability.

1 Introduction

The PJama project is a collaboration between Malcolm
Atkinson’s team at the University of Glasgow and
Mick Jordan’s team at Sun Microsystems Laboratories
and is attempting to demonstrate the benefits of an
industrial-strength, orthogonally persistent program-
ming language [7]. Opportunistically and for technical
reasons we have chosen to build an execution platform
and additional class libraries that provide orthogonal
persistence for Java [1, 14].

�Malcolm Atkinson is currently on leave as a visiting professor at
Sun Microsystems Laboratories, Mountain View, CA, USA.

1Sun, Java, and PJava are registered trademarks of Sun Microsys-
tems Inc. in the USA and other countries.

The initial design of this platform has been reported
[4, 6] and some early experiences with the first proto-
type, PJama0, have been described [17]. Further ex-
perience with building and operating this prototype has
suggested a refinement of the store architecture. The
pressures for change are given here:

� A succession of ports of our technology between
different versions of the JVM [20], an activity that
will not diminish, has shown the need for better
insulation between the store management code and
the JVM.

� At present, parts of our code are highly inter-
related which makes maintenance and experimen-
tation difficult. The same problem was discovered
in PS-algol [3] and this led to a more modular de-
sign for its successor, Napier88 [21].

� A sophisticated model of cache management, with
the potential for a variety of complementary man-
agement regimes in different regions, is now op-
erational [13]. However, at present the persistent
object store (POS) layer only operates one regime
and so it is difficult to exploit this potential. The
availability of multiple POS management regimes
will allow tailored support for special objects, such
as those required by multi-media applications.

� The recovery technology of our existing POS pre-
vents us re-cycling cache space that contains up-
dated objects [13]. This limits the amount of data
that can be modified within one transaction.



� The present monolithic POS is not convenient for
incremental algorithms, such as garbage collection
or archiving. This places an upper limit on the size
of the stores over which PJama0 can operate.

For these reasons, and with some data from a year
of operation, we set out to design a new architecture
for our orthogonally persistent Java virtual machine
(OPJVM) as a prelude to implementing the next
version of PJama2, PJama1. This paper reports on
the design of one part of that OPJVM, thePJama
Store Layer(PJSL). This interfaces with the object-
caching technology [13] and has descriptors to tell
it the representations used by the supported JVM.
The infinite variety of types of object that a POS
may be asked to preserve are reduced to a small
number ofkinds. The objects are stored inpartitions
to allow incremental POS-management operations
and each partition is under the control of a particular
regime. The operations that the OPJVM uses to ex-
ecute against a store are specialised by kind and regime.

All the issues presented in this paper are discussed in
greater detail in a techinical report [25].

1.1 Design Goals

The primary aim of PJSL is to support the operation
of PJama1 when running real workloads. The typical
workload makes long-running and complex use of
highly structured data, such as that concerned with
software construction [18]. Ultimately, we want
concurrent access to the store to be organised as long
running and flexible transactions. It is hoped that the
design of PJSL is sufficiently general that it will service
a wide range of applications and will be used to support
various language implementations. Its flexibility should
allow for a series of store implementation experiments.

The specific and immediate goals are:

� to support complete orthogonality, so thatany
object type can be accommodated, including in-
stances of all classes and arrays whatever their
size3;

2PJama was formerly known as PJava, but that epithet has been
trademarked by Sun to denote Personal Java.

3For engineering reasons the current upper bound for arrays is2
27
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Figure 1: PJama Architecture.

� to accommodate at least 10GB of highly struc-
tured data, typically dominated by large numbers
of small objects;

� to be capable of continuous operation with in-
cremental algorithms for disk garbage collection,
archiving, etc.;

� to be capable of running on a file system or on raw
disk, with a minimum amount of operating-system
dependent code; and

� to be appropriate for our planned developments,
which are flexible and long-running transactions,
schema evolution, archiving, and distribution.

The implementation will be biased towards complex
computations that make repeated traversals over a sub-
graph of the objects that includes a moderate proportion
of the total population. However, the system must sur-
vive both total traversals and large bulk-loading oper-
ations. This must be achieved without requiring guid-
ance from application programmers, otherwise persis-
tence independence [7] will be lost.

1.2 PJama Architecture

This section briefly presents the current architecture
of PJama0, which is based on the JVM developed
by Sun Microsystems4. In Figure 1, the darker of
the shaded regions, which comprises the core of the

4Currently, the release of PJama0 is based on JDK1.0.2. However,
the port to JDK1.1.2 is close to completion.



interpreterand theheap, represents the original JVM.
The interpreter allocates, modifies, and reads objects in
from the heap.

In order for the JVM to support persistence, three new
components were added to it. Thestoreis kept on disk.
It contains the persistent data and it is cached at the
page level in thebuffer pool. All persistent objects,
before they can be accessed by the interpreter, are
copied from the buffer pool into theobject poolin a
format similar to those in the heap. Because of this, the
code used to operate over objects in the heap, can also
operate over objects in the object pool with minimal
changes.

New objects are still allocated in the heap. However,
if they become persistent (by being rendered reach-
able from other persistent objects, according to the
definition of persistence by reachability[7]), they are
migrated to the object pool and are also copied to the
store via the buffer pool. The operation which migrates
them is calledpromotion. Finally, any updates to
persistent objects are propagated from the object pool
to the store, again via the buffer pool.

This paper will concentrate on the components bounded
by the lighter of the shaded regions in Figure 1, namely
the store and the buffer pool, which will be referred to
as the PJama Store Layer or PJSL.

1.3 Paper Overview

Section 2 introduces partitions, kinds, and regimes and
shows how the appropriate method of an operation is
selected. Section 3 describes the internal layout of par-
titions, the format of persistent identifiers (PIDs), and
the use of descriptors. Section 4 contains our initial
views on disk and object space management. Finally,
Sections 5 and 6 present, respectively, related work and
conclusions.

2 Store Organisation

It has been decided that PJSL will adopt aPartitioning
Scheme[32]. This means that the store will be split
into smaller parts (partitions) so that each of them can
be garbage collected independently5. This partitioning

5Other algorithms, such as class evolution reformatting, archiving,
statistics gathering, etc. will also exploit this partition structure.

Operation

P
ar

tit
io

n 
R

eg
im

e

Object Kind
Operation

P
ar

tit
io

n 
R

eg
im

e

Operations
on Partitions on Objects

Figure 2: Operation Matrices.

scheme is considered to be the most efficient way
to incrementally garbage collect large spaces, such
as persistent object stores [11, 12, 23]. This view is
also supported by recent experiments conducted by
Printezis on garbage collecting small stores [24]. These
experiments showed that the time needed to garbage
collect stores of sizes between 27MB and 30MB varied
from 3 secs to 43 secs, depending on the object kinds
included and the degree of connectivity. It is obvious
that, if these times were extrapolated to apply to a
10GB store (which is roughly 300 times larger than the
sizes mentioned), the garbage collector will require a
prohibitively long pause to process the entire store in a
single operation.

Managing free-space inside a partition can be achieved
in many ways: compaction, free-lists, etc. The com-
bination of the free-space management scheme, along
with some additional organisation parameters, will
be referred to as thePartition Regime. Partitions of
the same regime will have the same internal structure
and will usually contain similar (in structure, size,
behaviour, etc.) objects. One regime can be more
appropriate than another for certain kinds of objects,
therefore several regimes can co-exist in the same store,
applied to different partitions. Based on this, operations
on partitions can be organised in a two-dimensional
array, indexed by the regime and operation (see Fig-
ure 2). This is similar to the single dispatch operation
used in object-oriented languages to invoke a method
on a given object [16].

Currently, objects in PJama can be divided into four dif-
ferent categories: class objects, instances, arrays, and
bytecodes6, each of which has a different internal struc-

6These are the byte arrays holding the results of compiling meth-
ods to byte-coded instruction sequences.



ture. These categories will be referred to asObject
Kinds or just Kinds. There are several operations de-
fined on objects, some being the same for all kinds (e.g.
move) and others requiring a different implementation
for each kind (pointer identification, faulting-in, etc.).
Further, it may be the case that some of these operations
are regime-specific. So, in a similar manner to opera-
tions on partitions, operations on objects can be organ-
ised in a three-dimensional array, indexed by the object
kind, regime, and operation (see Figure 2). Again, from
an object-oriented point of view, this is a simple imple-
mentation of a double-dispatch operation [16].

2.1 Partition Regimes

Six regimes will be implemented in the first version of
PJSL. Notice that heresmallobjects are those which are
small enough to fit into a singleTransfer Unit(TU)7. In
the same way,large objects are those which are larger
than a single TU. Theinitial six regimes are listed here.

Small Arrays : scalar and object arrays.

Small Instances : instances of classes.

Class Objects & Bytecodes: all instances of class
Class 8, i.e. all class objects and their bytecodes.
Clustering bytecodes with their classes minimizes
accesses to other partitions during class faulting.

Large Instances : instances of classes spanning TU
boundaries9.

Large Scalar Arrays : scalar arrays spanning TU
boundaries.

Large Object Arrays : arrays of instances or arrays
spanning TU boundaries.

Some of the reasons why partitions are organised in this
way, which relate to the store organisation on which
they are based (see Section 3), are presented below.

7A TU is the unit of transfer of data from the disk store to main
memory. It is a similar concept to a page, however it is named differ-
ently to avoid confusion, since its size might not be the same as the
page. In fact, different regimes might use TUs of different sizes.

8Strictly java.lang.Class but we omit thejava.lang.
where we believe it is easily understood.

9Assuming that the minimum TU size is 8KB, a large class in-
stance would have over 1,000 non-static fields, which is extremely
unusual. However, automatic generation of Java code (by program
translators, user-interface builders, etc.) occasionally results in such
classes.
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Figure 3: Invoking an Operation on a Partition.

� Separating small objects from large ones avoids
many boundary checks upon object-faulting as
they are unnecessary for small objects since they
are guaranteed not to span multiple TUs.

� When partitions only contain arrays, they do not
need to include descriptors and their manage-
ment structures (see Section 3.6), as arrays have
a compressed-type encoding in their header.

� Partitions containing only large scalar arrays10

can be very large, since they do not need to be
scanned to identify intra-partition references dur-
ing garbage collection. Their reference counts (see
Section 3.3) determine whether they are garbage.

It is worth mentioning here that the Mneme object store
[22] established a notion similar to regimes. In Mneme,
they are referred to aspoolsand can be managed inde-
pendently, allowing object formats to vary implement-
ing different buffer management. They even provide
greater flexibility since it is up to the pool implementor
to define their internal structure. This is not the case for
the partition regimes of PJSL, which have to conform
to the structure described in Section 3.2. This decision
was taken as a compromise between flexibility and ease
of implementing new regimes.

2.2 Invoking Operations on Partitions

Figure 3 shows how an operation on a partition is in-
voked. Each partition contains (in its header) a tag
which determines its regime. This tag serves as an index
into the two-dimensional operations matrix and, along
with the operation index, yields the code for the desired
operation. Then the code is executed, accepting as ar-
gument the partition ID.

10Commonly images, sound samples, and numeric data.



2.3 Object Kinds

The minimum set of object kinds required by PJama are
as follows.

Class Objects : instances of classClass [14]. These
require special implementations for the OPJVM
bootstrap and for swizzling [13]. Each of them
is an image of theClassjava lang Class
C structure and of the other C structures that it
points to: constantpool , methodblock s,
fieldblock s, etc. [20].

Instances of any class, apart fromClass .

Bytecodespointed to from themethodblock s of the
class objects [20]. These could have been repre-
sented as byte arrays, but they need to be handled
differently.

Scalar Arrays : arrays of any scalar type.

Object Arrays : arrays of objects (either of instances
or other arrays).

Descriptors : a kind defined for internal use by PJSL
(see Section 3.6).

Scalar and object arrays are separated since the pointer
identification operation on them is fundamentally
different (returning either none or all of the array
entries, respectively).

It is easy to introduce new object kinds and new opera-
tion implementations appropriate for them. This makes
it possible to optimise the handling of some objects. Ex-
amples are presented below.

Strings : strings in Java (i.e. instances of the class
String ) are made up of two separate objects
[14]. Since the space-overhead of an object in
PJSL is 16 bytes (see the technical report [25] for
more information on this), it might be more space-
efficient to transform small strings into single ob-
jects when they are written to the PJSL and trans-
form them back into Java memory format when
they are faulted-in.

Compressed Objects: large scalar arrays might be
compressed when moved onto disk to save transfer
time and disk space. Examples are images, sound
samples, etc.

Object Kind Tag

Regime Tag

Object
Operation

Operations on Objects

Partition

Figure 4: Invoking an Operation on an Object.

Stacks : stack objects which will be used when threads
(i.e. instances of classThread [14]) are allowed
to be persistent.

Distribution Proxies will be needed to denote refer-
ences to objects in remote stores [27].

2.4 Invoking Operations on Objects

Operations on objects are invoked in a similar fashion to
operations on partitions. The regime tag and operation
index are still needed, only this time a kind tag is also
required. This is contained in the object’s header and
will serve as the third index in the three-dimensional
operations matrix (see Figure 4). Once the code has
been retrieved, it is executed with the partition and ob-
ject IDs as arguments11.

2.5 Clustering Considerations

It might seem that grouping objects in different par-
titions according to their kind, as mentioned above,
would cause a high degree of declustering and hence a
decrease in the performance of PJSL. However, this is
not necessarily the case. Large data structures which
typically need to be clustered together (linked lists,
trees, etc.) tend to be constructed from only a few
distinct types of object, usually instances of a few
classes and arrays. Hence, even though the instances
and arrays will be written to different partitions, as
long as they are clustered close to each other within
these partitions, the overall impact on performance
will be low. It has also been observed that such data
structures are usually larger in persistent systems than

11The PID of the object encodes or refers to all of this information
(see Section 3.4) so it would suffice as the only argument, though then
some decoding would be repeated.
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in traditional ones [5].

A concrete example is given here. Consider the tree
structure seen in Figure 5 and the way it will be copied
to the store. According to scheme A, all objects are
clustered in the same partition, irrespective of their
kind. This keeps them close together and minimises
disk accesses when the tree is traversed. However,
object management within the partition is harder
and less efficient, since it has to deal with objects of
different structure, size, and behaviour.

Alternatively, according to scheme B, instances are
separated from arrays, when copied to the store.
However, objects of both kinds will be clustered close
to each other within each partition. Object management
within the partition is now more efficient because it
only has to deal with objects of the same kind. Initially,
when the tree is traversed, TUs from both partitions
have to be read, making the startup cost more expensive
than in scheme A. However, assuming that the entire
tree structure is big enough not to fit in a single TU, this
cost will be absorbed as the rest of the tree is traversed
and more TUs are accessed.

In the example in Figure 5, when the first node of
the tree, containing objectsa, b, and c, is accessed,
scheme A will touch one TU and scheme B two TUs.
However, when the next node, containing objectsd,
e, andf , is accessed, scheme A will touch a new TU

Translation

VMVM

Store Layer

VM

Scheme A

Store Layer Store Layer

Dataflow between VM and Store
Scheme B Scheme C

Figure 6: Dataflow between the Virtual Machine and
the Store Layer.

whereas scheme B will touch the same two TUs it
previously touched, which are very likely to still be in
the cache. Therefore, the initial cost of touching two
TUs has already been absorbed. Obviously, this is a
very specific example and the performance impact of
either scheme is very application dependent. However,
there will always be pathological cases for both of them.

As far as class objects are concerned, keeping them
close to instances is not very important since they are
typically faulted-in once per execution (assuming that
they are not evicted from the object cache). Also, there
will usually be a large number of instances of a given
class and it will be impossible to cluster all of them
close to the class object. It is more important to cluster
the bytecodes close to their corresponding class object,
since they are very likely to be faulted-in shortly after
it. PJSL will in fact do this, as explained in Section 2.1.

2.6 Optimising Dataflow

There are several ways to arrange the flow of data be-
tween the store layer and the virtual machine. Figure 6
illustrates three of them:

� Scheme A assumes that the store has been written
specifically for the given virtual machine, there-
fore the virtual machine talks to it directly. This of-
fers the highestpotentialperformance. However,
the store code is not generic and it is very prone
to change when the specification of the virtual ma-
chine changes.
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� In scheme B, the store layer is general-purpose and
totally independent of the virtual machine. How-
ever, since it is very likely that the object format it
supports is different from the one the virtual ma-
chine uses, an extra translation layer is introduced
to cope with this. This has a negative impact on
the performance of the system. However, the store
layer code is totally independent from the layer
above it and can be easily re-used with only the
translation layer having to be re-written.

� Scheme C is the one which will be adopted in
PJSL and has been proposed as a compromise be-
tween schemes A and B. The core of the store
layer is generic, with only a set of well-specified
operations (which define, among other things, the
object format) having to be implemented specifi-
cally for the given virtual machine or application
which uses the store directly. This way no trans-
lation layer intervenes to impact performance and
the store can be adapted to and optimised for par-
ticular situations. However, the use of the store is
not trivial, since the persistent programming lan-
guage implementor has to write the plug-in oper-
ations contained in the two operation matrices de-
scribed in Sections 2.2 and 2.4.

3 Partition Organisation

This section presents a brief discussion on how the par-
titions are going to be organised in PJSL. It is included
here to give a feel for how the store will operate, what
facilities will provide to the higher-levels, and what in-
formation will require from them. The contents of this
section are discussed in greater detail in the technical
report [25].
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3.1 Partition Identifiers

When a partition is created, it will be allocated an ID
which will stay attached to that partition, until it be-
comes empty and is reclaimed (if this ever happens).
This ID will be independent of the position of the par-
tition within the store. This way, it is possible to eas-
ily move, resize, and garbage collect a partition without
changing its ID and, therefore, any PIDs in objects in
other partitions which point to it (see Section 3.4).

3.2 Partition Layout

Figure 7 illustrates how the three main components of a
partition will be laid-out in the store.

Header : where the information describing a partition
is stored.

Object Space : where objects are allocated. As its size
increases, the object space grows forward in the
partition.

Indirectory : where indirection entries, also contain-
ing reference counts, are stored (see Section 3.3).
As its size increases, the indirectory grows back-
wards in the partition.

Ullage : free space on disc into which both the object-
allocation front and indirectory grow.

3.3 Indirectory

An indirectory entry contains the following fields.

Object Offset : the offset of the corresponding object
inside the partition from the start of this partition
A 4-byte word is enough for this, as we believe it
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acceptable to limit the maximum partition size to
4GB.

Reference Count : the number of references to the
corresponding object from objects inother parti-
tions. A 4-byte word is sufficient for this as well,
since it is unlikely that there will be more than 4
billion cross-partition references to a single object.

The use of the indirectory is illustrated in Figure 8.
When an indirectory entry is allocated for an object, it
keeps the same position inside the indirectory during
the entire life-time of that object. If the object is moved
inside the partition (due to compaction), only the object
offset in its indirectory entry is updated.

Indirectory entries which have been freed (when their
corresponding objects have been reclaimed) are linked
together in a list called theIndirectory Free-List. The
indirectory will grow only when this list is empty. It
can also shrink, if a number of contiguous entries at its
end have been freed.

3.4 PID Format

Figure 9 illustrates the format of thePersistent Identi-
fiers (PIDs) in PJSL. The least-significant bit of a PID
is always 1 to distinguish it from a memory address. In
the current JVM, these are all 8-byte aligned, both for
objects and handles, hence their least-significant bit is
012. The remaining space is split between the partition
ID and the index of the indirectory entry corresponding
to the object.

Even though 31 bit addressing might sound inadequate,
it must be made clear that in PJSL we address objects
rather than data, since the indirectory index is used as
part of the PID rather than the position of the object
inside the partition. It turns out that 31 bits are enough

12Any JVM combined with PJSL will have to (or will be changed
to) allocate its objects and handles so they are at least 2-byte aligned.
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to address stores larger than 10GB (our target size),
even after making pessimal assumptions about object
sizes. A full proof of this is given in the technical
report [25].

It is possible for PIDs to be exhausted within a par-
tition, without the partition being full. This happens
when there have been allocated2n objects in the parti-
tion without the object space having reached the indi-
rectory space. In this case, the partition is considered
to be full and, during the next garbage collection, an at-
tempt will be made to decrease its overall size by con-
tracting the ullage. Similarly, if the disk garbage col-
lector detects that the ullage is nearly exhausted, but the
PID availability isn’t, it will attempt an overall expan-
sion to increase the ullage.

3.5 Virtual Store View

Figure 10 shows the virtual view of the store that is
presented to the layer above, typically the object-cache
manager. The object-cache manager will specify the
regime under which an object has to be stored and
any subsequent updates to that object and the store
layer will handle the rest: object allocation, reference
count management, garbage collection, partition
re-organisation, etc. These operations might occur
synchronously (triggered by events such as updates,
allocations, etc.) or (in later versions of PJSL) asyn-
chronously, by daemons running in the background.

Another important point, illustrated in Figure 10, is that
both intra-partition and cross-partition references will
go via the indirectory. It would be possible to optimise



a

b c

Descriptors

Descriptor of Class Object of A

Descriptor of Instances of A

Partition 2

Partition 1

Instance of class A

Class Object of class A

Figure 11: Use of Descriptors.

the intra-partition references to point directly to the ob-
ject, since i) they do not affect the reference counts and
ii) the indirectory will not need to be visited, avoiding
a potential disk access. There are two reasons why this
will not be done. The most important one is that by
pointing directly to the object, it is not easy to deduce
its PID since this requires the index of its indirectory
entry (see the PID format in Section 3.4) and there is no
efficient way to retrieve it from the offset of the object
inside the partition. The second reason is a payoff dur-
ing compaction since, if all references go via the indi-
rectory, only the indirectory entries need to be updated,
rather than all the intra-partition references in every ob-
ject. This can accelerate significantly the compacting
phase of the disk garbage collector, especially in highly
inter-connected partitions [24].

3.6 Descriptors

It is important to be able to identify efficiently all point-
ers inside an object to speed-up the pointer swizzling /
un-swizzling operations, the scanning phase of garbage
collection, etc. Some language designers optimise the
object format itself to facilitate this. For example, the
pointers in all objects of Napier88 [8, 21] are grouped
together at the beginning of the object and can be
identified efficiently and uniformly. Unfortunately,
this is not possible for PJama, since the object format
used by the JVM does not guarantee this. To keep
the implementation simple, uniform, and generic, a
new scheme needs to be adopted to deal with this
complication.

A Descriptoris a special object, introduced to abstract
over the JVM’s layout conventions, which contains
information about the structure of all objects with the
same internal structure (at least the position of pointers
in them). Not all kinds of object need a descriptor,
e.g. bytecodes and scalar arrays don’t need one (there
are no pointers in them) nor do object arrays (all their
entries are pointers). However, pointers in instances
and class objects intermingle with scalars and it is not
trivial to identify them, hence descriptors need to be
introduced for both of these object kinds. All instances
of the same class can point to the same descriptor, since
they have the same internal structure. However, class
objects will each need a different descriptor, since their
contents, i.e. number and position of their pointers,
will vary.

The use of descriptors is illustrated in Figure 11. All
instances of class A point to the descriptor of instances
of A, which describes where the pointers inside the
instances are. This descriptor points to the class object
itself. This is necessary, since instances must point to
their corresponding class objects and, since they point
to the descriptor anyway, it is more space-efficient to
make the descriptor point to it rather than introducing
a new pointer inside each instance13. Finally, the
descriptor of the class object of A, which describes
where the pointers are inside the class object itself, is
included in partition 1 and is pointed to by the class
object. Notice that the descriptor of instances of A is
replicated inside each partition which contains at least
one instance of A. This helps to keep the descriptors
close to the instances and to minimise access to other
partitions during disk garbage collection.

The introduction of descriptors, apart from contribut-
ing towards the efficient and uniform identification of
pointers inside objects, also has the following advan-
tages.

� Descriptors can facilitate schema evolution, in the
case when the object format does not change. If a
class object needs to be replaced, only the point-
ers in the descriptors need to be updated and not
pointers in all instances.

� Descriptors can also optimise the heap garbage

13When instances are faulted into main memory, this indirection is
eliminated.
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collector of PJama, if the notion of object kinds
is retained while the objects are in memory.

� The fact that instances must point to their corre-
sponding class object would normally increase the
number of cross-partition references to class ob-
jects and hence would also increase the number of
changes to their reference counts. However, the
introduction of descriptors avoids this, since all
instances of a given class would point to the de-
scriptor inside their home partition and only the
descriptors, at most one per partition, will point to
the class object, via a cross-partition reference.

� Keeping the descriptors close to the correspond-
ing objects improves locality and avoids the disk
garbage collector from having to access other par-
titions.

� On disk at least, descriptors will also include the
type of the fields of the corresponding objects so
that a store can be used on platforms with different
byte-order.

4 Free-Space Management

As mentioned in previous sections, the persistent object
store will be divided into partitions whose size will vary
and will depend on the kind of objects they contain. Be-
cause of this, two levels of free-space management are
needed: one for allocating partitions inside the store and
one for allocating objects inside a partition. The next
two sections present a discussion of the differences in
trade-offs, behaviour, and assumptions between the two
levels.

4.1 In the Store

The store will be split into fixed-size blocks, calledBa-
sic Blocks14 (BBs). Their size will be between 256KB
and 1MB and probably equal to the smallest partition
size. When a new partition needs to be allocated in the
store, a number of contiguous BBs will be reserved for
it, which of course implies that a partition size can only
be a multiple of the BB size. On the other hand, when
a partition needs to be de-allocated, the BBs it occupies
will be marked as free in order to be re-used later. The
use of BBs is illustrated in Figure 12.

Managing the free BBs and allocating space for par-
titions might seem a similar concept to managing free-
space and dynamically allocating memory for programs
[30]. Some of the properties of a good dynamic mem-
ory allocator are i) to minimise fragmentation, ii) to
adapt quickly to changes in allocation patterns, iii) to
minimise wasted space, and iv) to be fast. However,
the trade-offs in managing free BBs are very different
to managing free-space in memory, as discussed below.

Fragmentation : Since persistent stores are very long-
lived (several orders of magnitude greater than a
program heap), it is vital that fragmentation is kept
as low as possible. Otherwise, it will have a neg-
ative impact on the performance and size of the
store, as its life-time increases, and might intro-
duce indefinetely accumulating space leaks, which
are unacceptable in the context of a long-lived per-
sistent store.

Adaptation to Changes : Again, due to the store be-
ing long-lived and different applications being able
to run over it at different times (or even concur-
rently), the BB manager should be able to adapt
easily to new allocation patterns.

Wasted Space: Disks these days are large and rela-
tively cheap and, since the first two properties are
so important, the space taken up by the store can
be a small percentage (up to 10% or 15%) larger
than its real size, in order to deal with them more
efficiently.

Speed : Even though speed is vital for a dynamic mem-
ory allocator (since the programs which use it can
exhibit a very high allocation rate), it is not as

14A better name for them would beMinimum Blocks, but unfortu-
nately this is abbreviated to MBs, same as Megabytes.



important in allocating and freeing BBs. Parti-
tion allocation and de-allocation will not be ex-
tremely frequent events in PJSL and they will usu-
ally be followed by several disk accesses. There-
fore, speed can be sacrificed in order to manage
space more efficiently15.

Flexible Partition Size : Sometimes partitions might
need to grow or shrink. However, when a new
size for one is proposed, the BB allocator can be
allowed to change it within some limits. For ex-
ample, if a 2MB partition needs to grow, it prob-
ably does not matter whether it becomes 3MB or
3.5MB (but does matter if it becomes 20MB). This
can allow the BB allocator to be more efficient in
dealing with fragmentation.

Partition Mobility : Since PIDs do not depend on
the position of the partition in the store (see Sec-
tion 3.4), it is possible to move a partition, in order
to make a larger number of contiguous BBs avail-
able for a big partition. This clashes with the typi-
cal assumptions a memory allocator usually makes
(e.g. objects allocated dynamically in languages
like C or Pascal are non-migratable). The move-
ment of partitions can only be used as a very last
resort, after all other possible solutions have been
exhausted.

The decision on the algorithm to be used for the BB
management is still being researched. Ideas will be
drawn from previous work in free-space management
for file systems [15, 28] and dynamic memory manage-
ment and allocation [30].

4.2 In a Partition

Once a partition has been allocated in the store, the
free space inside it will be managed at the object level.
The object space will be reclaimed and compacted
using garbage collection [29]. Additionally, due to the
introduction of partition regimes (see Section 2.1), it is
possible for different partitions to implement different
free-space management policies, optimised for the
kinds of objects they contain.

15Of course, this does not mean that the BB manager might require
1 sec or more to allocate a partition. It just means thatsomespeed
might be sacrificed in order to achieve more efficient BB manage-
ment.

For example, compaction can be beneficial for small
objects because it can deal with the big number of small
“holes” which are created as small objects become
garbage. Also the fast allocation that it provides can
improve the performance of promotion, if a large
number of objects are allocated in the same partition.
Alternatively, free-lists might apply better to larger
objects since it is inadvisable to copy them unneces-
sarily16 and, because of their size, fewer large objects
can be accommodated inside a partition, which has the
potential to keep the free-lists short.

It is also worth pointing out that clustering objects of
similar size inside each partition has the potential to re-
duce fragmentation considerably.

5 Related Work

A large number of persistent stores have been con-
structed for a variety of systems and purposes.
Mentioning all of them would be too lengthy. There-
fore this section is selective.

ObjectStore [19] from Object Design Inc. is considered
to be the most successful commercial object store. It
uses a client-server model and was initially targetted
for C++ applications, therefore space re-use relied on
explicit deletes rather than garbage collection. Its latest
version (5.0) provides an API to store Java objects.

Object Design Inc. have also announced lately a new
product called ObjectStore PSE (Persistent Storage
Engine), which is a lightweight version of their main
product. The main difference is that it is written en-
tirely in 100% Pure Java, thus trading-off performance
for portability.

The Texas object store [26] from the University of
Texas at Austin is similar to ObjectStore in that it was
targetted for C++ and explicit deletes. It implements
pointer-swizzling at page-fault time [31] and uses a
technique similar to the descriptors (see Section 3.6) in
order to do so.

16It has been observed that the average lifetime of large objects is
usually greater than that of smaller ones [30]. This argument still
needs supporting experimental evidence in the context of persistent
stores. However, if it does hold and compaction is used, large ob-
jects will be forced to be copied unnecessarily, causing an increased
number of disk accesses.



The object store implemented for the persistent lan-
guage Napier88 [9, 10, 21], from the University of St
Andrews, Scotland, has a good model of reachability
and hence makes disk garbage collection possible.
However, the object format which it uses groups all
pointers in the beginning of the objects [8, 9, 10]. If
the application which uses it does not have a similar
object format (which is the case for PJama), expensive
translations are necessary when objects are copied to
and from the store.

Finally PJSL was influenced by the Mneme object store
[22]. As mentioned in Section 2.1, it has a similar par-
titions and regimes called pools. Each pool can be in-
dependently managed and can support different object
formats. Also, Mneme was designed with disk garbage
collection in mind. It is not known whether a garbage
collector has actually been implemented for it.

6 Conclusions and Future Work

The design of a store layer for the support of an orthog-
onally persistent platform for Java has been described.
Important features are:

� the grouping of store-objects into a small number
of kinds;

� the partitioning of disk space into partitions;

� local regimes for space and transfer management;

� the introduction of descriptors that abstract over
the store formats used by a virtual machine; and

� the use of these features at the store-layer interface.
They will be presented in a structured way for use
by the adaption code, which must be written when
a new (version of a) virtual machine is combined
with the store layer.

The first three points contribute to flexibility and will
allow experiments with regimes that are thought to
be optimal for particular categories of data. The final
two are expected to yield benefits when binding to
a new virtual machine. They can be considered a
satisfactory compromise, trading performance against
maintenance costs, between stores that are tailored to a
particular JVM and stores that incur large translation
costs because they choose a neutral format of their
own. The partition structure is also intended to allow

incremental store administration algorithms.

Construction of this new store will take place this sum-
mer and we plan to report on the extent to which the
design matches our expectations at the workshop. The
store will be integrated with a JVM and performance
measurement and tuning will quickly follow. The next
phase will involve three parallel investigations:

� exploration of disk garbage collection strategies;

� evaluation of the utility of specialized partition
regimes; and

� validation that the store will support its intended
load and planned functionalities:

– flexible and long transactions;

– concurrent archiving and disk garbage col-
lection;

– schema evolution; and

– a model of distribution [27].
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