
Smart Phone: An Embedded System for Universal Interactions ∗

Liviu Iftode, Cristian Borcea, Nishkam Ravi, Porlin Kang, and Peng Zhou
Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

{iftode, borcea, nravi, kangp, pzhou}@cs.rutgers.edu

Abstract

In this paper, we present a system architecture that al-
lows users to interact with embedded systems located in
their proximity using Smart Phones. We have identified four
models of interaction between a Smart Phone and the sur-
rounding environment: universal remote control, dual con-
nectivity, gateway connectivity, and peer-to-peer. Although
each of these models has different characteristics, our ar-
chitecture provides a unique framework for all of the mod-
els. Central to our architecture are the hybrid communica-
tion capabilities incorporated in the Smart Phones. These
phones have the unique feature of incorporating short-
range wireless connectivity (e.g., Bluetooth) and Internet
connectivity (e.g., GPRS) in the same personal mobile de-
vice. This feature together with significant processing power
and memory can turn a Smart Phone into the only mobile
device that people will carry wherever they go.

1. Introduction

Recent advances in technology make it feasible to incor-
porate significant processing power in almost every device
that we encounter in our daily life. These embedded systems
are heterogeneous, distributed everywhere in the surround-
ing environment, and capable of communicating through
wired or wireless interfaces. For a number of years, vision-
ary papers [21, 18] have presented a picturesque computer-
ized physical world with which we can potentially interact
faster and in a simpler fashion.

People, however, are not yet taking advantage of this
ubiquitous computing world. Despite all the computing
power laying around, most of our daily interactions with
the surrounding environment are still primitive and far from
the ubiquitous computing vision. Our pockets and bags are
still jammed with a bunch of keys for the doors we have to
open/close daily (they did not change much since the Mid-
dle Ages), the car key or remote, access cards, credit cards,

∗ This work is supported in part by the NSF under the ITR Grant Num-
ber ANI-0121416

and money to pay for goods. Any of these forgotten at home
can turn the day into a nightmare. If we travel, we also need
maps and travel guides, coins to pay the parking in the city,
and tickets to take the train or subway. In addition, we are
always carrying our mobile phone, which for some mys-
terious reason is the least likely to be left at home. When
we finally arrive home or at the hotel, we are “greeted” by
several remote controls eager to test our intelligence. All
these items are absolutely necessary for us to properly in-
teract with our environment. The problem is that there are
too many of them, they are sometimes heavy, and we will
likely accumulate more and more of them as our life goes
on, requiring much larger pockets.

For this problem, the community does not lack innova-
tive solutions that address some of its aspects (e.g., wireless
microservers [15], electronic payment methods [1, 8], dig-
ital door keys [13]). What is missing is a simple, universal
solution, which end-users are likely to accept easily. Ide-
ally, we would like to have a single device that acts as both
personal server [20] and personal assistant for remote in-
teraction with embedded systems located in proximity of
the user. This device should be programmable and sup-
port dynamic software extensions for interaction with newly
encountered embedded systems (i.e., dynamically loading
new interfaces). To simplify its acceptance by society, it
should be a device that is already carried by people wher-
ever they go.

We believe that Smart Phones are the devices that have
the greatest chance of successfully becoming universal re-
mote controls for people to interact with various devices
from their surrounding environment; they will also replace
all the different items we currently carry in our pockets.
Smart Phone is an emerging mobile phone technology that
supports Java program execution and provides both short-
range wireless connectivity (Bluetooth) and cellular net-
work connectivity through which the Internet can be ac-
cessed.

In this paper, we present a system architecture that allows
users to interact with embedded systems located in their
proximity using a Smart Phone. We have identified four
models of interaction between a Smart Phone and the sur-
rounding environment: universal remote control, dual con-

nectivity, gateway connectivity, and peer-to-peer. Although
each of these models has different characteristics, our ar-
chitecture provides a unique framework for all the mod-
els. Central to our architecture are the hybrid communica-
tion capabilities incorporated in the Smart Phones which al-
low them to interact with the close-by environment through
short-range wireless networking and with the rest of the
world through the Internet over cellular links. This feature
together with significant processing power and memory can
turn a Smart Phone into the long awaited universal personal
assistant that can make our daily life much simpler.

The rest of this paper is organized as follows. Section 2
presents the enabling technologies for Smart Phones. Sec-
tion 3 describes the four models of interaction between a
Smart Phone and the embedded systems located within its
proximity. Section 4 presents the unified software architec-
ture for all the models. In section 5, we discuss the current
status and future work. Section 6 presents the related work,
and the paper concludes in Section 7.

2. Smart Phones Technology

With more than a billion mobile phones being carried
around by consumers of all ages, the mobile phone has be-
come the most pervasive pocket-carried device. We are be-
ginning to see the introduction of Smart Phones, such as
Sony Ericsson P800/P900 [9] and Motorola A760 [10] (Fig-
ure 1), as a result of the convergence of mobile phones and
PDA devices. Unlike traditional mobile phones, which have
limited processing power and act merely as “dumb” con-
duits for passing voice or data between the cellular network
and end users, Smart Phones combine significant computing
power with memory, short-range wireless interfaces (e.g.,
Bluetooth), Internet connectivity (over GPRS), and various
input-output components (e.g., high-resolution color touch
screens, digital cameras, and MP3 players).

Sony Ericsson P800/P900 runs Symbian OS [12], an op-
erating system specifically designed for resource con-
strained devices such as mobile phones. It also comes
equipped with two versions of Java technology: Per-
sonal Java [11] and J2ME CLDC/MIDP [2]. Additionally,
it supports C++ which provides low level access to the op-
erating system and the Bluetooth driver. The phone has
16MB of internal memory and up to 128MB external flash
memory. Motorola A760 has a Motorola i250 chip for com-
munication, Intel’s 200 MHz PXA262 chip for compu-
tation, and 256MB of RAM memory. It runs a version
of MontaVista Linux and comes with Java J2ME sup-
port [2].

Bluetooth [7] is a low-cost, low-power standard for
wireless connectivity. Today, we can find Bluetooth chips
embedded in PCs, laptops, digital cameras, GPS de-
vices, Smart Phones, and a whole range of other elec-

Figure 1. Example of Smart Phones: Sony Er-
icsson P800 (Left) and Motorola A760 (Right)

tronic devices. Bluetooth supports point-to-point and
point-to-multipoint connections. We can actively con-
nect a Bluetooth device to up to seven devices simulta-
neously. Together, they form an ad hoc network, called
Piconet. Several piconets can be linked to form a Scatter-
net.

Another important development for the mobile phone
technology is the introduction of General Packet Radio Ser-
vice (GPRS) [3], a packet switching technology over the
current GSM cellular networks. GPRS is offered as a non-
voice value-added service that allows data to be sent and
received across GSM cellular networks at a rate of up to
171.2kbps, and its goal is to supplement today’s Circuit
Switched Data and Short Message Service. GPRS offers an
always-on service and supports Internet protocols.

3. Smart Phone Interaction Models

A Smart Phone can be used to interact with the sur-
rounding environment in different ways. We have identi-
fied four interaction models: universal remote control, dual
connectivity, gateway connectivity, and peer-to-peer. With
these models, a Smart Phone can be used to execute appli-
cations from as simple as remotely adjusting various con-
trols of home appliances or opening smart locks to complex
applications such as automatically booking a cab or order-
ing/paying in a restaurant using an ad hoc network of mo-
bile phones to connect to the cashier’s computer.

3.1. Universal Remote Control Model

The Smart Phone can act as a universal remote control
for interaction with embedded systems located in its prox-
imity. To support proximity-aware interactions, both the
Smart Phone and the embedded systems with which the user
interacts must have short-range wireless communication ca-
pabilities. Figure 2 illustrates such interactions using Blue-
tooth. Due to its low-power, low-cost features, Bluetooth is
the primary candidate for the short-range wireless technol-
ogy that will enable proximity-aware communication.

Figure 2. The Universal Remote Control Inter-
action Model

Since embedded systems with different functionalities
can be scattered everywhere, a discovery protocol will allow
Smart Phones to learn the identity and the description of the
embedded systems located in their proximity. This protocol
can work either automatically or on-demand, but the infor-
mation about the devices currently located in user’s proxim-
ity is displayed only upon user’s request. Each embedded
system should be able to provide its identity information
(unique to a device or to a class of devices) and a description
of its basic functionality in a human-understandable format.

This model works well as long as the user has the in-
terfaces for interacting with the embedded systems pre-
installed on the phone. An alternative, more flexible, solu-
tion is to define a protocol that allows a Smart Phone to learn
the interfaces from the embedded systems themselves. The
problem with this idea is that many embedded systems may
not be powerful enough to run complex software that imple-
ments such protocols. In the following, we describe a sec-
ond model of interaction that solves this problem.

3.2. Dual Connectivity Model

Central to our universal interaction architecture is the
dual connectivity model which is based on the hybrid com-
munication capabilities incorporated in the Smart Phones.
They have the unique feature of incorporating both short-
range wireless connectivity (e.g., Bluetooth) and Internet
connectivity (e.g., GPRS) in the same personal mobile de-
vice. With this model, the users can interact with the close-
by environment using the short-range wireless connectivity
and with the rest of the world using the Internet connec-
tivity. Figure 3 illustrates the Dual Connectivity interaction
model.

As a typical application, let us assume that a person has
just bought an “intelligent” microwave oven equipped with
a Bluetooth interface. This embedded system is very sim-
ple and is not capable of storing or transferring its inter-

Figure 3. The Dual Connectivity Interaction
Model

face to a Smart Phone. However, it is able to identify itself
to Smart Phones. Using this information, the phones can
connect to a server across the Internet (i.e., over GPRS) to
download the code of the interface that will allow it to be-
come a remote control for the microwave oven. The phone
can also perform authentication over the Internet to ensure
that the code is trusted. All further communication between
this embedded system and the Smart Phone happens by exe-
cuting the downloaded code. This code will display a panel
that emulates the panel of the microwave on the phone’s
screen (i.e., it effectively transforms the phone into an intu-
itive microwave remote control).

Another typical application is opening/closing Smart
Locks. We envision that the entry in certain buildings will
soon be protected by Smart Locks (e.g., locks that are
Bluetooth-enabled and can be opened using digital door
keys). The dual connectivity model enables users carrying
Smart Phones to open these locks in a secure manner. The
Smart Phone can establish a connection with the lock, ob-
tain the ID of the lock, and connect to an Internet server over
GPRS to download the code that will be used for opening
the lock (a digital door key can also be downloaded at the
same time). The server hosting the interface and the keys
for the Smart Lock maintains a list of people that are al-
lowed to open the lock. The identity of the Smart Phone
user (stored on the Smart Phone in the form of personal in-
formation) is piggybacked on the request submitted to the
server. If the server finds that this user is allowed to open
the lock, it responds with the code for the interface and the
digital key.

The dual connectivity model can also be used to im-
plement electronic payment applications similar to Milli-
cent [1]. A client does not need to know about a vendor’s
embedded system in advance. The Smart Phone can authen-
ticate the vendor using its Internet connection. The same
connection can be used by the client to withdraw electronic
currency from her bank and store it on the phone. Another

Figure 4. The Gateway Connectivity Interac-
tion Model

option provided by the Smart Phone is to send some of the
unused money back into the bank account (i.e., make a de-
posit each time the amount on the phone exceeds a certain
limit). Potentially, the vendor’s embedded system can also
be connected to the Internet. For instance, this ability can be
used to authenticate the client. Figure 3 presents a similar
application that involves accessing an ATM using a Smart
Phone.

3.3. Gateway Connectivity Model

Many pervasive applications assume wireless communi-
cation through the IEEE 802.11 family of protocols. These
protocols allow for a significant increase in the communica-
tion distance and bandwidth compared to Bluetooth. Using
these protocols, the communication range is 250m or more,
while Bluetooth reaches only 10m. The bandwidth is also
larger, 11-54Mbps compared to less than 1Mbps for Blue-
tooth. Additionally, many routing protocols for mobile ad
hoc networks based 802.11 already exist [19, 16]. The dis-
advantage of 802.11 is that it consumes too much energy,
and consequently, it drains out the mobile devices’ batteries
in a very short period of time. With the current state of the
art, we do not expect to have 802.11 network interfaces em-
bedded in Smart Phones or other resource constrained em-
bedded systems that need to run on batteries for a signifi-
cant period of time (e.g., several hours or even days).

More powerful systems, however, can take advantage of
the 802.11 benefits and create mobile ad hoc networks. In
such a situation, a user would like to access data and ser-
vices provided by these networks from its Smart Phone. To
succeed, a gateway device has to perform a change of pro-
tocol from Bluetooth to 802.11 and vice-versa. Many places
in a city (e.g., stores, theaters, restaurants) can provide such
gateway stations together with 802.11 hotspots.

Figure 4 illustrates this communication model and also
presents an application that can be built on top of it. Let us
assume a scenario where people want to book nearby cabs
using their Smart Phones. Instead of calling a taxi company
or ”gesturing” to book a cab, a client can start an applica-

Figure 5. The Peer-to-Peer Interaction Model

tion on her Smart Phone that seamlessly achieves the same
goal. Hence, the client is just one-click away from book-
ing a cab. In this scenario, each cab is equipped with 802.11
wireless networking and GPS devices, and the entire book-
ing process is completely decentralized. To join the mobile
ad hoc network created by the cabs, a Smart Phone needs to
connect to a gateway station that performs a translation of
protocols from Bluetooth to 802.11 and vice-versa.

3.4. Peer-to-Peer Model

The Smart Phones can also communicate among them-
selves (or with other Bluetooth-enabled devices) in a multi-
hop, peer-to-peer fashion, similar to mobile ad hoc net-
works. For instance, this model allows people to share mu-
sic and pictures with others even if they are not in the prox-
imity of each other. Figure 5 depicts yet another example of
this model. A group of friends having dinner in a restaurant
can use their Smart Phones to execute a program that shares
the check. One phone initiates this process, an ad hoc net-
work of Smart Phones is created, and finally the payment
message arrives at the cashier.

4. System Architecture

Our system architecture for universal interaction consists
of a common Smart Phone software architecture and an in-
teraction protocol. This protocol allows Smart Phones to in-
teract with the surrounding environment and the Internet.
Figure 6 shows the Smart Phone software architecture. In
the following, we briefly describe the components of the
software architecture.

• Bluetooth Engine is responsible for communicat-
ing with the Bluetooth-enabled embedded systems.
It is composed of sub-components for device dis-
covery and sending/receiving data. The Bluetooth
Engine is a layer above the Bluetooth stack and pro-
vides a convenient Java API for accessing the Blue-
tooth stack.

• Internet Access Module carries out the communica-
tion between the Smart Phone and various Internet

InterfacePersonal
Data Storage Cache Module

Internet

Acccess

Execution
Engine

Proximity
Engine

CommandsCommands

Device ID, Name

Data

Data Interface

Interface

Device ID, Data

Interface, Data

Bluetooth

Engine

Figure 6. Smart Phone Software Architecture

servers. It provides a well-defined API that supports
operations specific to our architecture (e.g., download-
ing an interface). The protocol of communication is
HTTP on top of GPRS.

• Proximity Engine is responsible for discovering the
embedded systems located within the Bluetooth com-
munication range. Each time the user wants to inter-
act with one of these systems, and an interface for this
system is not available locally (i.e., a miss in the Inter-
face Cache), the Proximity Engine is responsible from
downloading such an interface. If the embedded sys-
tem has enough computing power and memory, the
interface can be downloaded directly from it. Other-
wise, the Proximity Engine invokes the Internet Ac-
cess Module to connect to a web server and download
the interface. The downloaded interface is stored in the
Interface Cache for later reuse. Once this is done, the
Proximity Engine informs the Execution Engine to dis-
patch the downloaded interface for execution. All fur-
ther communication between the Smart Phone and the
embedded system happens as a result of executing this
interface.

• Execution Engine is invoked by the Proximity Engine
and is responsible for dispatching interface programs
for execution over the Java virtual machine. These pro-
grams interact with the Bluetooth Engine to communi-
cate with the embedded systems or with other Smart
Phones (as described in Section 3.4). They may also
interact with the Internet Access Module to communi-
cate with Internet servers. For instance, the interface
programs may need to contact a server for security-
related actions or to download necessary data in case
of a miss in the Personal Data Storage.

• Interface Cache stores the code of the downloaded in-
terfaces. This cache avoids downloading an interface
every time it is needed. An interface can be shared
by an entire class of embedded systems (e.g., Smart

Locks, or Microwaves). Every interface has an ID
(which can be the ID of the embedded system or the
class of embedded systems it is associated with). This
ID helps in recognizing the cached interface each time
it needs to be looked up in the cache. Additionally,
each interface has an associated access handler that is
executed before any subsequent execution of the in-
terface. This handler may define the time period for
which the interface should be cached, how and when
the interface can be reused, or the permissions to ac-
cess local resources. The user can set the access han-
dler’s parameters before the first execution of the inter-
face.

• Personal Data Storage acts as a cache for “active
data”, similar to Active Cache [14]. It stores data that
needs to be used during the interactions with vari-
ous embedded systems. Examples of such data include
digital door keys and electronic cash. Each data item
stored in this cache has three associated handlers: ac-
cess handler, miss handler, and eviction handler. Each
time an interface needs some data, it checks the Per-
sonal Data Storage. If the data is available locally (i.e.,
hit), the access handler is executed, and the program
goes ahead. For instance, the access handler may check
if this data can be shared among different interfaces. If
the data is not available locally (i.e., miss), the miss
handler instructs the Internet Access Module to down-
load the data from the corresponding Internet server.
The eviction handler defines the actions to be taken
when data is evicted from the cache. For instance, elec-
tronic cash can be sent back to the bank at eviction
time.

Figure 7 shows the interaction protocol that takes place
when a Smart Phone needs to interact with an embedded
system. We consider that any embedded system is regis-
tered with a trusted web server (this web server can be phys-
ically distributed on multiple computers). At registration,
the web server assigns a unique ID and a URL to the de-
vice. All the information necessary to interact with the de-
vice along with a user interface is stored at that URL. This
URL may be common for an entire class of embedded sys-
tems.

The user invokes the Proximity Engine each time she
needs to interact with a device located in the proximity.
Once the embedded systems in the proximity have been
identified, the user can choose the one she wants to interact
with. Consequently, a request is sent to the embedded sys-
tem to provide its ID and URL. Upon receiving the ID and
URL of the embedded system, the Smart Phone executes the
access control handler, and then, loads and executes the in-
terface. In case of a miss in the Interface Cache, the inter-
face needs to be downloaded on the phone either from the
web server or from the embedded system itself. An inter-

Device ID, Name, Data (optional)

Interface (optional)

Interaction via Interface

Device ID, Smart Phone ID
Request for Interface

T
im

el
in

e

Interface, Data

Interaction via Interface

Request for Device ID

Smart Phone Web ServerDevice
Bluetooth GPRS

Figure 7. Smart Phone Interaction Protocol

face downloaded from an embedded system is untrusted and
is not allowed to access local resources (i.e., this is a sand-
box model of execution, where the interface can only exe-
cute safe instructions on the phone). The interfaces down-
loaded from the web server are trusted; they are assumed to
be verified before being distributed by the server.

Each time a Smart Phone requests an interface from the
web server, it has to send the interface ID and the URL pro-
vided by the embedded system. It also sends its ID (stored in
the Personal Data Storage). The permission to download an
interface is subject to access control enforced based on the
Smart Phone ID and, potentially, other credentials presented
by the user. Once the access is granted, the web server re-
sponds with the interface code.

5. Status and Future Work

In this section, we briefly outline the current status and
several open issues that we have to overcome in order to
implement our system architecture. We are in the process
of building the system architecture on top of Ericsson’s
P800/900 phones. Our first step consists of implementing
the basic architecture for the universal remote control inter-
action model. The architecture components to be developed
for this model are the Bluetooth Engine and Proximity En-
gine along with a simple Execution engine over Java.

We have partially implemented the Bluetooth Engine and
have written and tested a few sample programs to test the
feasibility of connecting a phone to another phone or to
a Bluetooth-enabled laptop. Besides directly connecting to
Bluetooth-enabled devices, a phone can also connect to a
LAN. We are in the process of investigating the feasibil-
ity of using the Bluetooth LAN profile to connect the phone
to a LAN through a Bluetooth access point.

Until recently, the commercially available Blue-
tooth chips have been working well for one-hop com-
munication, but their scatternet capabilities have not
been mature enough to support multi-hop communica-

tion as needed in our peer-to-peer interaction model.
Currently, there are products [4], however, whose scat-
ternet capabilities have been successfully tested. We en-
vision that multi-hop communication in ad hoc networks
will take place either over Bluetooth or over 802.11 de-
pending on the trade-offs between the battery power
consumption and communication range. Our system archi-
tecture supports both situations through the peer-to-peer
model and the gateway model, respectively.

To connect a Smart Phone to the Internet over GPRS,
we can use HTTP or TCP. A decision regarding the proto-
col used for Internet access needs to consider the trade-offs
between the simplicity provided by HTTP and the flexibil-
ity and efficiency provided by TCP.

Although our architecture provides a level of security by
obtaining interface code and confidential data from a trusted
web server, many issues related to security and privacy still
need to be addressed. For instance, we need to investigate
different lightweight encryption algorithms that work on re-
source constrained devices to counter eavesdropping with-
out a serious overhead. So far we have assumed that the per-
sonal information of the user, including confidential data,
would be stored on the Smart Phone. In such a situation,
losing the Smart Phone could pose a serious security threat
to the owner. The data stored on the phone should be made
inaccessible to anyone but the phone owner. A simple pass-
word scheme is insufficient because entering a password ev-
ery time confidential data is accessed could be a major turn
off for the users. We plan to investigate both software pro-
tection mechanisms and hardware solutions (e.g., biometric
security using fingerprint recognition [5]).

6. Related Work

Personal Server [20] is a small-size mobile device that
stores user’s data on a removable Compact Flash and wire-
lessly utilizes any I/O interface available in its proximity
(e.g., display, keyboard). Its main goal is to provide the user
with a virtual personal computer wherever the user goes.
Our goal is to provide a simple method of interaction with
systems embedded in the surrounding environment. Unlike
Personal Server which cannot connect directly to the In-
ternet, Smart Phones do not have to carry every possible
data or code that the user may need; they can download on-
demand data and code for interfaces from the Internet.

CoolTown [17] proposes web presence as a basis for
bridging the physical world with the World Wide Web. For
example, entities in the physical world are embedded with
URL-emitting devices (beacons) which advertise the URL
for the corresponding entities. Our model is more flexible
as we allow code and data to be downloaded to mobile de-
vices, either from the physical environment via short-range

wireless connection, or from the Internet via the GPRS con-
nection.

Microservers [15] share one of our goals of turning a
handheld device into a universal remote control. Their ap-
proach consists of embedding web servers in Bluetooth-
enabled devices and using WAP over Bluetooth to com-
municate between the handheld and these devices. Our ap-
proach is more practical since it does not require any com-
plex software to be installed on resource constrained em-
bedded systems. Additionally, it covers other interaction
models besides the universal remote control model (e.g.,
gateway model, peer-to-peer model).

Jini [6] is a system designed to deal with resource discov-
ery and interaction in a new environment. When a service
joins a network of Jini-enabled services, it advertises itself
by publishing an object that implements the service API.
The client finds services by looking for an object that sup-
ports this API. When it gets the service’s published object,
it downloads any code it needs in order to talk to the service
(via RMI, CORBA, XML, or any private protocols). We
share a few design principles with Jini, but unlike Jini, our
architecture does not require an infrastructure, and there-
fore, it is more suitable for ubiquitous computing environ-
ments.

The idea of using digital door keys to unlock doors has
already been proposed [13] as an addition to a Personal
Server. However, the issue of digital door key distribution
from the external authority to the Personal Servers is not
addressed. Our work uses the Smart Phone as an incarna-
tion of a Personal Server and also addresses the issue of se-
cure key distribution. More generally, our system architec-
ture provides a general framework that can be used to im-
plement any application that needs to interact with wireless
embedded systems.

7. Conclusions

In this paper, we have argued for turning the Smart Phone
into the only device that people carry in their pockets wher-
ever they go. The Smart Phone can be used as both per-
sonal server that stores or downloads data that its user needs
and personal assistant for remote interaction with embedded
systems located in the user’s proximity. To achieve this vi-
sion, we have presented a unified system architecture for
different models of interaction between a Smart Phone and
the surrounding environment. Central to this universal inter-
action architecture is the dual connectivity feature of Smart
Phones, which allows them to interact with the close-by
environment through short-range wireless networking and
with the rest of the world through the Internet over cellu-
lar links.

References

[1] The Millicent Protocol for Inexpensive Electronic Com-
merce. http://www.w3.org/Conferences/WWW4
/Papers/246/.

[2] MIDP Profile. http://wireless.java.sun.com/midp/.
[3] General Packet Radio Service (GPRS).

http://www.gsmworld.com/technology/gprs/intro.shtml.
[4] Zeevo Bluetooth. http://www.azzurri.com/new htm/zeevo.htm.
[5] HP iPAQ 5400. http://welcome.hp.com/country/us/en

/prodserv/handheld.html.
[6] Jini Network Technology.

http://wwws.sun.com/software/jini.
[7] Bluetooth. https://www.bluetooth.org/.
[8] Digicash. http://www.digicash.com.
[9] Ericsson P800. http://www.sonyericsson.com/P800/.

[10] Motorola A760. http://motoinfo.motorola.com/motoinfo
/products.asp?product=A760&y=2003.

[11] PersonalJava. http://java.sun.com/j2me/.
[12] Symbian OS. http://www.symbian.com/.
[13] A. Beaufour and P. Bonnet. Personal Servers as Digital Keys.

In Proceedings of the 2nd IEEE International Conference on
Pervasive Computing and Communications (PerCom 2004).
To Appear, 2004.

[14] P. Cao, J. Zhang, and K. Beach. Active Cache: Caching
Dynamic Contents on the Web . In Proceedings of IFIP
International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware 1998), pages
373–388, 1998.

[15] S. Hartwig, J.-P. Stromann, and P. Resch. Wireless Mi-
croservers. Pervasive Computing, 1(2):58–66, April-June
2002.

[16] D. Johnson and D. Maltz. Dynamic Source Routing in Ad
Hoc Wireless Networks. T. Imielinski and H. Korth, (Eds.).
Kluwer Academic Publishers, 1996.

[17] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell,
P. Debaty, G. Gopal, M. Frid, V. Krishnan, H. Morris,
J. Schettino, B. Serra, and M. Spasojevic. People, places,
things: Web presence for the real world. In Proceedings of
the 3rd IEEE Workshop on Mobile Computing Systems and
Applications, pages 19–28, 2000.

[18] M. Satyanarayanan. Pervasive Computing: Vision and Chal-
lenges. IEEE Personal Communications, August 2001.

[19] C. Perkins and E. Royer. Ad Hoc On Demand Distance
Vector Routing. In Proceedings of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications (WMCSA
1999), pages 90–100, New Orleans, LA, February 1999.

[20] R. Want, T. Pering, G. Dianneels, M. Kumar, M. Sundar, and
J. Light. The Personal Server: Changing the Way We Think
about Ubiquitous Computing. In Proceedings of 4th In-
ternational Conference on Ubiquitous Computing (Ubicomp
2002), pages 194–209. Springer LNCS, September 2003.

[21] M. Weiser. The computer for the twenty-first century. Scien-
tific American, September 1991.

