
Available at URL ftp://ftp.cs.dartmouth.edu/TR/TR96-285.ps.Z

Mobile agents for mobile computing

Robert Gray

David Kotz

Saurab Nog

Daniela Rus

George Cybenko

Department of Computer Science

Dartmouth College

Hanover, NH 03755

frgray,dfk,saurab,rus,gvcg@cs.dartmouth.edu

Technical Report PCS-TR96-285

May 2, 1996

Abstract

Mobile agents are programs that can move through a network under their own control, mi-

grating from host to host and interacting with other agents and resources on each. We argue that

these mobile, autonomous agents have the potential to provide a convenient, e�cient and robust

programming paradigm for distributed applications, particularly when partially connected com-

puters are involved. Partially connected computers include mobile computers such as laptops

and personal digital assistants as well as modem-connected home computers, all of which are

often disconnected from the network. In this paper, we describe the design and implementation

of our mobile-agent system, Agent Tcl, and the speci�c features that support mobile computers

and disconnected operation. These features include network-sensing tools and a docking system

that allows an agent to transparently move between mobile computers, regardless of when the

computers connect to the network.

1 Introduction

Mobile computers have become increasingly prevalent as professionals discover the bene�ts of hav-

ing their electronic work available at all times. Developing distributed applications that make

e�ective use of networked resources from a mobile platform, however, is di�cult for several rea-

sons. First, mobile computers do not have a permanent connection into the network and are often

disconnected for long periods of time. Second, when the computer is connected, the connection

often has low bandwidth and high latency and is prone to sudden failure, such as when a physical

obstruction blocks the signal from a cellular modem. Third, since the computer may be forced

to use di�erent transmission channels depending on its physical location, the performance of its

This research was supported by ONR contract number N00014-95-1-1204 and AFOSR contract number

F49620-93-1-0266.

1

network connection can vary dramatically from one session to another. Finally, depending on the

nature of the transmission channel, the computer might be assigned a di�erent network address

each time that it connects. In short, any distributed application that works on a mobile platform

must deal with unforgiving network conditions.

In this paper we describe a system that uses mobile agents to support distributed applications

for mobile computers. An agent is a program that is autonomous enough to act independently even

when the user or application that launched it is not available to provide guidance and handle errors.

A mobile agent is an agent that can move through a heterogeneous network under its own control,

migrating from host to host and interacting with other agents and resources on each, typically

returning to its home site when its task is done. We argue that mobile agents are a good paradigm

for distributed applications and an excellent paradigm when mobile computers are involved.

We briey describe a mobile-agent system, Agent Tcl, that is under development at Dartmouth

College, and then present a system of support agents that provide network sensing and routing

services. These support agents allow an agent to transparently migrate between a mobile computer

and a permanently connected machine, or between one mobile computer and another, regardless of

when the mobile computers connect to the network. These support agents provide a more general

solution to mobile computing than approaches in which mobile agents are used simply to move an

application onto a laptop for continued interaction with the laptop's owner.

The remainder of this section describes the rationale behind mobile agents and applications of

mobile agents. Section 2 highlights related work. Section 3 gives an overview of the Agent Tcl

system. Section 4 presents the agents that support mobile computing, our implementations of these

agents, and an example sales application in which these agents may be used. Finally, Section 5

discusses our results and future work.

1.1 Why mobile agents?

Mobile agents are an e�ective paradigm for distributed applications, and are particularly attractive

for partially connected computing. Partially connected devices include physically mobile computers

such as laptops and personal digital assistants as well as home and business computers that are

occasionally connected to the network over a SLIP or PPP modem connection. All of these devices

are frequently disconnected from the network for long periods of time, often have low-bandwidth,

unreliable connections into the network, and often change their network address with each recon-

nection. Mobile agents directly address the �rst two problems, and with low-level support, can

handle the third problem without di�culty.

A mobile agent, for example, can migrate o� a laptop and roam the Internet to gather infor-

mation for its user. It can access the needed resources e�ciently since it moves to their network

location rather than transferring multiple requests and responses across the low-bandwidth laptop

connection. Since it is not in continuous contact with the laptop, the agent is not a�ected by sudden

loss of connection, and can continue its task even if the user powers down or disconnects from the

network. When the user reconnects, the agent returns to the laptop with the result of its travels.

Conversely, an application that lives in the network can send a mobile agent onto the laptop. The

agent acts as the application's surrogate, interacting with the user e�ciently and continuing to

interact even in the event of long-term disconnection [TLKC95, JdT+95].

Mobile agents also ease the development, testing and deployment of distributed applications

since they hide the communication channels but not the location of the computation [Whi94b];

they eliminate the need to detect and handle network failure except during migration; they do not

require the preinstallation of application-speci�c software at each site (although the agent system

must be present); and they can dynamically distribute and redistribute themselves throughout

2

the network. Mobile agents move the programmer away from the rigid client-server model to the

more exible peer-peer model in which programs communicate as peers and act as either clients or

servers depending on their current needs [Coe94]. Mobile agents lead to more scalable applications

since work can be easily moved to whichever network location is most appropriate. Mobile agents

allow ad-hoc, on-the-y applications that represent would be unreasonable investment of time if

code had to be installed on each network site rather than dynamically dispatched. Finally, our

experience with agent programming suggests that mobile agents are easier to understand than

many distributed computing paradigms.

1.2 Applications of mobile agents

It can be argued that mobile agents are not an enabling technology since there are few applications

(if any) that are impossible without mobile agents [HCK95]. However, the advantages of mobile

agents lead to improved performance in many distributed applications, where performance is a

matter of network utilization, completion time, programmer convenience, or just the ability to

continue interacting with a user during network disconnection. Mobile agents are best viewed as a

general tool for realizing arbitrary distributed applications. This view is reected in the range of

applications in which mobile agents are used.

Perhaps the most common examples of mobile code are Java applets. Java applets are interactive

applications that can be dynamically pulled across the network with a Java-enabled WWW browser

[Sun94]. Java applets are not true mobile agents since they migrate only once, before they start

executing, and then only when requested by a user. Java applets are a powerful argument for

mobile code, however, since most applets would be intolerably slow if they controlled the screen

from a remote location. By moving to the local machine, an applet can control the screen e�ciently

without the need for pre-installation. Applets represent a special case of mobile agents. Mobile

agents are much more powerful since they migrate at will.

True mobile-agent systems include Telescript [Whi94a, Whi94b], Tacoma [JvS95], Mobile ser-

vice Agents (MSA) [TLKC95], and our own Agent Tcl [Gra95, Gra96]. Telescript agents are

currently used for network management, active e-mail, electronic commerce, and business process

management. In network management, a Telescript agent might carry a software upgrade onto a

machine along with the code to perform the installation; the agent executes the installation code

and disappears. In electronic commerce, a Telescript agent might leave a laptop, search multiple

electronic catalogs on behalf of its user, and then return to the laptop with the best purchase price.

The most visible use of Tacoma is StormCast, a system for distributed weather simulation in which

the volumes of data are so immense as to make data movement impractical. Mobile Service Agents

(MSA) have been used primarily in \follow-me" computing in which an application moves to the

location of the user. One MSA demo involves an electronic conference proceedings. When a user

connects his laptop to the conference's machines, an agent is sent to the laptop. The user interacts

with the proceedings via this agent and can continue interacting even when disconnected.

Agent Tcl has been used primarily in information-retrieval applications. One information-

retrieval application involves searching distributed collections of technical reports; another, med-

ical records [Wu95]; and a third, three-dimensional drawings of mechanical parts [CBC96]. The

advantages of agents in these retrieval applications is that each distributed collection can provide

low-level primitives rather than all possible search operations; an agent can combine the primitives

into e�cient, multi-step searches. With the service agents for mobile computing that are intro-

duced in Section 4, these same applications work unchanged on roving devices. Agent Tcl is also

being used in workow applications, in which an agent carries a multi-step task description from

one site to another, interacting with the user at each site in order to carry out that user's part

3

of the task [CGN96]. In Section 4, we describe a workow application that involves both �xed

and mobile computers, and that is supported easily with our mobile computing infrastructure. In

this application, an independent traveling salesperson carries a laptop when visiting customers and

uses software that helps to select vendors and products and to place orders. Agents represent

orders and travel to the corporation's computers where they interact with billing, inventory, and

shipping agents to arrange for the purchase. Agents are also used to explore vendor catalogs and

search for products that meet the customer's needs. In all cases, the agents can function while the

salesperson's laptop is disconnected.

2 Related work

Mobile agents can be viewed as an extension of the remote procedure call and remote programming

paradigms. Remote procedure call (RPC) allows a client to invoke a server operation using the

standard procedure call mechanism [BN84]. Remote programming allows a client to send a subpro-

gram to a server. The subprogram executes on the server and sends its result back to the client.

Variants of remote programming include the Network Command Language (NCL) [Fal87], Remote

Evaluation (REV) [SG90], and SUPRA-RPC [Sto94]. Agents generalize remote programming to

allow arbitrary code movement.

Systems such as Java [Sun94], Safe Tcl [BR], and Omniware [Col95] are concerned with the safe

execution of untrusted code fragments. Safe Tcl is limited to Tcl scripts but Java and Omniware can

work with any program (as long as the program is compiled into the bytecodes of the appropriate

virtual machine). These three systems do not directly support mobile agents, but they address the

same security issues and can be used as components in a larger system. Safe Tcl, for example, is

used in Agent Tcl.

The best-known mobile-agent system is Telescript from General Magic [Whi94b, Whi94a]. Tele-

script supports mobile computers and is used primarily on Personal Digital Assistants (PDA) such

as the Sony Magic Link. The details of how Telescript agents jump between mobile hosts and

handle disconnected operation are unclear. The Mobile Service Agent (MSA) system from ECRC

[TLKC95] also supports mobile computers, but it uses a less general mechanism than described in

this paper. There are several other research projects that are building infrastructure for mobile

agents. The most notable are Tacoma [JvS95], Itinerant Agents [CGH+95], Sodabot [Coe94], and

ARA [Pei96]. As yet, however, none of these projects have considered mobile platforms.

Others have speci�cally suggested using mobile agents in mobile-computing environments.

Pitoura and Bhargava propose a framework for agents to interact with heterogeneous mobile

databases, but they focus on database consistency issues more than communication and trans-

port issues [PB95].

Some database systems allow \stored SQL procedures" where you can de�ne complex SQL

commands and store them on the server [BP88]. The stored commands are executed at the server

end during a user transaction. Some distributed �le systems support disconnected operation,

including Coda [KS92, MES95], Ficus [RHR+94], and others [HH95]. In these systems, applications

on the laptop access the local �le cache while the laptop is disconnected. On reconnection, the �le

system reconciles any di�erences with the appropriate �le servers. The Bayou �le system [TTP+95]

internally uses a form of mobile code (but not agents) to handle reconciliation.

The Rover system [JdT+95] supports disconnected operation through queued RPC and relocat-

able dynamic objects (RDO). Queued RPC allows asynchronous RPC requests to be queued and

then sent when the laptop connects; an asynchronous reply is delivered later. Relocatable dynamic

objects (RDO) allow objects (code and data) to be downloaded from the server into the client,

4

where they can execute closer to the user and, potentially, while disconnected. These RDOs are

not true mobile agents because they do not move after they have begun execution.

Noble et al. [NPS95] describe the Odyssey system, in which applications on mobile computers

can request upcalls whenever a change in resource state, such as network bandwidth or battery

power, exceeds some threshold. This feature enables applications on mobile computers to change

their behavior according to their environment, and would be a helpful substrate for an agent system.

There are of course many papers on mobile IP and packet forwarding. Perhaps the best back-

ground source is [Joh95]. Other examples include [BZCS96], [IG93] and [WYOT93]. The idea is

generally to allow a mobile computer to retain the same IP address regardless of location, so that

applications on the laptop may continue to communicate with applications elsewhere. While such

a system would simplify our laptop-docking scheme, since the laptop would never change address,

it would not solve the primary problem of disconnection. Athan and Duchamp [AD93] go further

in routing all of a laptop's communication through an \agent" that can �lter data according to

current network conditions, or store messages for delayed delivery.

3 Agent Tcl

Agent Tcl [Gra95, Gra96] is a mobile-agent system that we are developing at Dartmouth College

and using in several information-management applications. Agent Tcl meets four main goals:

� Reduce migration to a single instruction like the Telescript go instruction [Whi94b], allow the

instruction to appear at arbitrary points, and once the instruction is called, transparently

capture the current state of the agent and transmit this state to the destination machine.

The programmer should not have to explicitly collect state information. The system should

handle all transmission details, including the possibility of the destination machine being

disconnected or having a new network address.

� Provide transparent communication among agents. The communication primitives should be

exible and low-level, but should work the same regardless of whether the agents are on the

same or di�erent machines, and should hide all transmission details.

� Provide a simple scripting language as the main agent language, but support multiple lan-

guages and transport mechanisms, and allow the straightforward addition of a new language

or transport mechanism.

� Provide e�ective security in the uncertain world of the Internet.

The architecture of Agent Tcl is shown in Figure 1. The agent server keeps track of the

agents that are running on its machine, provides inter-agent communication facilities, accepts and

authenticates agents arriving from other hosts, and restarts these agents in their own interpreter.

All other services are provided by agents. Such services include navigation, network sensing, and

access control. The agents themselves are separate processes executing the appropriate language

interpreter. Each interpreter has the capability to capture the agent's state and send the state to

a remote agent server.

The only language that we currently support is Tcl, although work on Java is underway. Tcl

is a high-level scripting language that was developed in 1987 and has enjoyed enormous popularity

[Wel95]. Tcl is an attractive agent language due to its simplicity, ease of use, and portability. A

set of special commands was added to Tcl to create Agent Tcl. An agent uses these commands

to migrate from machine to machine and to communicate with other agents. The most important

5

Host X

Agent
server

Traffic
Monitor

Dock
master

Navigation
agent

Agent
server

DockMigration

master

Navigation
agent

Traffic
Monitor

Agent

Host Y

Agent

Figure 1: The server-based architecture of Agent Tcl. The agent server coordinates the activities

of all local agents and accepts new agents that are arriving from other machines. All other services

are provided by specialized agents such the as the dock master, tra�c monitor, and navigation

agents.

command is agent jump, which migrates an agent from one machine to another. The agent jump

command captures the internal state of the agent, encrypts and digitally signs the state image, and

sends the state image to the agent server on the destination machine. The server authenticates the

agent and starts a Tcl interpreter. The Tcl interpreter restores the state image and resumes agent

execution at the statement immediately after the agent jump. Further details about Agent Tcl can

be found in [Gra95] and on our web page.1. Details about Agent Tcl's security mechanisms can be

found in [Gra96].

4 Mobile computing

Mobile agents are an excellent paradigm for implementing distributed applications, particularly in

the context of partially connected computers. To be e�ective, however, the agent system must

support disconnected operation in several ways.

� An agent must be able to jump o� a partially connected computer (such as a laptop) and

return to it later, even if the computer is only connected for brief periods and changes its

address upon reconnection.

� An agent must be able to navigate through the Internet to �nd the services that it needs.

� An agent must be able to sense and react to the network environment, so that it may act

autonomously while its user is disconnected.

� An agent must be able to communicate e�ectively with other agents.

In this section we describe our solutions, using \laptop" to mean any partially connected com-

puter. Although our description and implementation are speci�c to the Agent Tcl system, the

concepts are all generally applicable.

1http://www.cs.dartmouth.edu/~agent

6

4.1 Support for disconnected operation

Unlike traditional client-server computing, agents continue to operate even when the laptop is

disconnected. For agents trying to jump into or out of the laptop, however, the traditional approach

(try, timeout, sleep, retry, ...) can often fail, particularly if the agent does not happen to retry its

jump during a brief reconnection period.

To overcome these problems, our laptop docking system pairs each laptop with a permanently

connected dock machine (Figure 2). While not all machines act as docks, all machines have a

dock-master agent (Figure 1).

CONNECTED NETWORK

PERMANENTLY

LAPTOP1

LAPTOP2

MACHINE1

LAPTOP1_dock

LAPTOP2_dock

MACHINE2

LAPTOP3_dock

MACHINE3

LAPTOP3

Figure 2: Laptop-docking system

Consider an agent wishing to jump to a disconnected laptop named D (Figure 3). To do so, it

executes the command agent jump D. When the command completes, the agent will be running on

D; the process is transparent. The agent jump implementation attempts to contact D, which fails

because D is disconnected. So it then attempts to contact the dock-master agent on the laptop's

dock. By convention, the dock for host D is named D dock. Internet host naming allows a single

permanently connected machine to have many aliases, which allows one host to act as a dock for

many laptops. Once the agent is transferred to D dock, it is not restored into a running agent,

but stored on disk under the control of the dock-master at D dock. When D reconnects, its dock-

master agent contacts the dock-master at D dock so that all waiting agents can be transferred to

the laptop D, where they are restored. In the process, D dock learns of any change in the address

for D. Thus, agents trying to reach D will fail to reach it at its old address, jump to D dock, and

eventually reach D at the new address.

Now consider an agent trying to leave the disconnected laptop D. Again the agent executes

agent jump, which detects that the laptop is disconnected, saves the state of the agent to disk, and

informs the local dock-master agent. The dock-master continually monitors the network status;

when the network is connected, the dock-master immediately transfers all waiting agents o� of the

laptop (Figure 3). This scheme has several advantages: the agents leave the laptop as soon as

7

X

3

STATUS UPDATE

NETWORK

D

CONNECTION NOTIFICATION

NEW IP ADDRESS OF D

D_dock

4

5

TRANSFER SLEEPING AGENTS

5

S

1

2

QUEUE OF

SLEEPING AGENTS
QUEUE OF

SLEEPING AGENTS
WAITING TO JUMP FROM D WAITING TO JUMP TO D

WAITING AGENTS BEGIN JUMPING

Figure 3: Jumping to or from the laptop

possible; agents do not miss any opportunities to leave; waiting agents are saved on disk, where

they survive crashes and shutdowns, and do not occupy precious memory and CPU time; and their

state is captured and ready for transfer as soon as the network is connected.

Thus, agents wishing to jump on or o� the laptop move quickly as soon as the laptop is

connected, minimizing the connection time necessary. Again, the entire process is transparent to

the agent.

Now consider a more complex case, where an agent's source (host S) and destination (host D)

are both laptops (Figure 4). It is easy to imagine that they may never both be connected at the

same time, making a direct jump impossible. The agent's state is captured on S, and saved on

S's disk until the dock-master detects a network attached to S. At that point S's dock-master

attempts to transfer the agent to D; when that fails, it transfers the agent to D's dock (D dock). If

D dock is unreachable, perhaps due to a temporary problem in the Internet, the S dock-master tries

to transfer the agent to S dock . If S dock is also unreachable, the dock-master will try the entire

process again at a later time. If S dock is reachable, the agent is sent to S dock . The dock-master

on S dock will periodically attempt to transfer the agent to either D or D dock . The agent may

reside at D dock until D connects and noti�es the dock-master at D dock of the new location of

D. Once at D, the agent's state is restored.

We are extending our laptop docking system to support multi-destination jumps, which are

useful when an agent wishes to visit multiple hosts (D1; D2; :::; Dn) but in no particular order.

This situation arises when the agent is searching all of the sites for information, or when it needs

to visit one of a replicated set of servers. The multi-destination jump allows the agent to travel in

a manner most suitable to the present network conditions. The dock-master agent on S �rst tries

to transfer the agent to one of the �nal destinations by trying each one in order (D1; D2; :::; Dn).

If all the destinations are unreachable, the S dock-master transfers the agent to S dock . The dock-

master at S dock periodically tries to reach the destinations until one of the transfers succeeds.

S dock does not transfer the agent to a dock Dk dock in order to avoid premature commitment to

a destination that may rarely connect, although this issue is a matter for further research. When

the agent awakes (returns from its call to agent jump), it knows that it has arrived at one of the

destinations. A quick check of the local host name con�rms the particular destination.

For agents that desire more control over the jumping process, we provide hooks to allow agents

to query the status of the network connection, to request a failure noti�cation rather than being

blocked when the jump destination cannot be reached immediately, or to request that the jump go

8

PERMANENTLY
CONNECTED NETWORK

3

S D

D_dockS_dock

1

2

Figure 4: Laptop to laptop jump

as far toward the destination as possible and then wake up the agent.

4.2 Agent navigation and adaptation

The world of an agent is dynamic and uncertain. Machines go up and down, the information stored

in repositories changes, and the exact sequence of destinations and steps needed to complete an

information-gathering task often is not completely known at the time that the agent is launched into

the world. An autonomous agent is crippled without external state (what the agent can perceive

about the state of its world) since it has no way of perceiving and adapting to the dynamic changes

in its environment. In this section we describe the sensors that allow an agent to determine its

external state and a mechanism that uses these sensors for adaptive navigation.

Network sensing. Network sensing, at least the ability for a laptop to detect the state of its

network connection, is an integral part of our laptop docking system described in the previous sub-

section. It performs an even more important task, however, when providing agents with information

about the expected transit time across the network and about whether a network site is reachable

at all. This information enables agents to adapt to changing network conditions. Consider an agent

that needs to visit information resources at several sites. A smart agent should be able to adapt to

the fact that some sites may currently be unreachable, and to visit other sites �rst. An even smarter

agent may be able to plan a sequence of visits given an estimate of the current network delay to

each site. Other agents may wish to tailor their behavior to the current bandwidth available, such

as the amount or format of the data that they carry with them.

We provide a set of network sensing tools that the agents can use to gather information about

the status of the network.

� A tool to determine whether the local host is physically connected. This tool \pings" the

broadcast address on the local subnet; if there is any response in a short interval, the network

is connected.

9

� A tool to determine whether a speci�c host is reachable; this is just the standard \ping."

� A tool to determine the expected bandwidth to a remote host, so that agents can choose

their destination or amount of data based on the bandwidth. Rather than measuring the

bandwidth by sending lots of data to the remote host, which would often take as much time

as sending the agent itself, we attempt to predict bandwidth from experience. A tra�c

monitor agent at each site tracks information about all recent communications (bytes moved

and time required), which is provided by the local agent server. Application agents contact

the network monitor to obtain estimates of bandwidth or latency, which are computed from

the recorded information. Our tra�c monitor uses a weighted average of all communications

with the requested remote site, weighting recent communications more heavily than older

communications. If there are no recent communications with the requested site, the tra�c

monitor may use data from recent communications with \similar" sites, that is, other sites in

the same subnet or domain as the requested site.

Navigation agents. To locate other agents that can serve their needs, agents need access to a

dynamic index of service agents and their locations. We use a system of virtual yellow pages to help

the agents decide where to go. These yellow pages contain listings of services and their locations.

By consulting these navigation services and using their network sensing tools, agents can formulate

adaptive navigation plans to visit some of the services.

The virtual yellow pages are a distributed database of service locations maintained by a hier-

archical set of navigation agents. Services register with the navigation agents that are scattered

throughout the system (Figure 5). Each machine has a specialist agent that knows the location of

some of the navigation agents (which in turn know the locations of services and other navigation

agents). In general, by consulting the local specialist agent and then visiting one or more navigation

agents, an application agent can obtain the necessary list of services and their locations.

Since the information landscape changes, the virtual yellow pages are not static entities. We

use adaptive learning methods to keep the virtual yellow pages up to date.

� New services register with one or more navigation agents to advertise their location. They

describe their service through a list of keywords. For example, in Figure 5, service 1 registers

with navigation agent 2 by the following protocol: service 1 �rst contacts the specialist agent

on its machine which knows the location of navigation agent 2. Service 1 then sends a

registration message to navigation agent 2 which adds service 1 to the database.

� An application agent locates a list of navigation agents by querying the specialist agent on the

local host (Figure 5). The application agent then consults the navigation agents by providing

a list of keywords. The navigation agent returns a list of matching services from its database.

After visiting some of the services, the application agent revisits the navigation agents to

provide feedback on which of the sites were useful and which were useless. These \consumer

reports" enable the navigation agents to prioritize their lists.

� Agents that discover services accidentally report the corresponding sites to the navigation

agents. For example, services relevant to one task may be discovered while handling a di�er-

ent but related task. Such a situation might arise if an agent handles textual queries about

di�erent topics; while �nding documents relevant to one topic, it may discover document col-

lections that relate to another. Alternatively, an agent might receive di�erent site information

from two navigation agents; it feeds the di�erences back to the navigation agents.

10

 Agent
Specialist
 Agent

Specialist
 Agent

Specialist
 Agent

Customer
for Service 1

Customer
for Service 1

Customer
for Service 1

Customer
for Service 1

Specialist

 Agent 2

Machine 1 Machine 2

Machine 3 Machine 4

Service 1

m
ig

ra
tio

n1

migration2

m
igration3

query

query

qu
ery

queryNavigation
 Agent 1

Navigation

Figure 5: An example of navigation. Each machine has a number of agents running on it (denoted

by rectangular blocks.) The specialist agents know about the location of one or more navigation

agents. There are two navigation agents shown here: one on machine 1 and one on machine 2. The

navigation agent on machine 2 knows about service 1, but the navigation agent on machine 1 does

not. The specialist agent on machine 3 knows about both navigation agents. The customer agent

on machine 3 uses the following protocol to locate service 1. It �rst contacts its local specialist

agent and �nds the location of navigation agents 1 and 2. Then it migrates to machine 1 and

queries navigation agent 1 about service 1. This navigation agent does not know about service

1 since service 1 is only registered with navigation agent 2. The customer agent then migrates

to machine 2 where it queries navigation agent 2 and �nds the location of service 1. Finally, the

customer agent migrates to the location of service 1.

Application agents construct an initial plan for accomplishing their task by using the prioritized

list of services that they receive from the navigation agents. Most applications will want to visit

either one or all of the sites on the list. Using the network-sensing tools, however, they may choose

to skip some sites that are not reachable or to which there is a particularly slow connection, and

then return to them later.

4.3 Inter-agent Communication

Agent Tcl currently provides two levels of agent communication. The low-level mechanisms allow

agents to communicate through message passing or through a direct connection that is established

when an agent issues the agent meet command and the receiving agent accepts the meeting.

The higher-level Agent Remote Procedure Call (ARPC) [NCK96] mechanism builds on top of

these primitives, adding structure as well as a higher-level abstraction to the communication. Server

agents in the system register with the local \name-server" agent by specifying their interface in a

11

exible de�nition language. Client agents search for a service by providing a similar interface and

having the \name-server" �nd a match from among its registered servers. This exible interface-

matching technique helps agents to communicate even when they share only a subset of a complex

interface. For example, a server might have added non-standard features, or might have an older

but upwardly-compatible interface.

4.4 Example

Returning to our example of the traveling salesperson, we see how the above infrastructure supports

this distributed, mobile application. While on the road, the salesperson carries a laptop or PDA

loaded with catalog and order-entry software. While at the customer's location, the software helps

to select appropriate products and vendors, prepare a quote, and place an order. The software

creates an agent for each order, which must be approved by the salesperson's supervisor before the

order is submitted. The agents immediately try (and fail) to jump o� of the salesperson's laptop to

the supervisor's computer, and are queued by the dock-master to await the laptop's reconnection.

After a day of customer visits, the salesperson connects the laptop to the network, and all of the

agents jump o� on their way to the supervisor's computer. The laptop need be connected for only

a few seconds.

If the supervisor is also a traveler, then the agents must reach the supervisor's laptop. If that

laptop is not connected, the agents wait at that laptop's dock until the laptop reconnects. The

agents ask the supervisor to examine and approve the orders, and then they continue on their way

to the appropriate vendors (perhaps after another delay to wait for the laptop to reconnect, and

perhaps forking into multiple agents, one for each vendor).

Once at the vendor, an order agent interacts with the vendor's billing agents to record the sale

for billing purposes, with inventory agents to determine which items are in stock, and with shipping

agents to arrange shipping. In each interaction, the agent may use customized code to adapt to

price changes, discontinued or back-ordered items, and shipping details.

Eventually, the order agent returns to the salesperson's laptop to inform them that the sale was

complete, and whether shipping was successful.

In this application, several of the computers are inherently mobile and disconnected, so the

agents must depend on the dock-masters to help them jump from machine to machine. The use of

agents allows for considerable exibility. Through standard protocols, the vendors and independent

salespeople can use software produced by di�erent third-party vendors, which compete on the

basis of other features. In particular, the salesperson chooses an order-placement software package

according to its ability to produce adaptive order agents; since the order agents are executable

code, they can implement adaptive strategies that may not have been anticipated by the writers

of the vendor software. While it is possible to build a traditional system with �xed interfaces that

exchange data only, only mobile agents can allow this kind of exible innovation.

5 Discussion

We validated our system in our labs through an experiment with a laptop computer called Bond.2

We started an agent on Bond, and the agent immediately jumped o� Bond to interact with a

remote server. Before it could return, we disconnected Bond, carried it to another lab, connected

it to a di�erent subnet, and recon�gured it with a new IP address.

2James Bond.

12

Meanwhile, the traveling agent had �nished its task and had attempted to jump back to Bond.

The jump failed, so it was transferred to Bond dock, where its state was saved on disk.

When Bond reconnected at the new address, its dock-master discovered the new connection and

new address, and sent a message to Bond dock, back in the original lab. Bond dock then sent the

waiting agent on to Bond. We then repeated the experiment, carrying Bond back to its original

address.

This simple experiment demonstrates how our mobile-agent system supports mobile comput-

ing in that an agent was able to leave the laptop and return home twice, despite disconnection,

recon�guration, and reconnection at a di�erent IP address.

Our system still has a few limitations, however:

1. If an agent is running on a machine when the machine goes down, the agent is lost.

2. If an agent is running on a machine and the machine becomes disconnected from the network

for a long period of time, the agent remains in exile on this machine for the entire time.

3. Currently, a laptop dock-master agent monitors the state of the local network connection

through periodic \pings" to the broadcast address on the local subnet. If the laptop is

connected for less time than the interval between pings, the dock-master will not detect the

connection. A better solution is to obtain an interrupt directly from the operating system

when the network connection changes [NPS95].

4. Through a simple convention, it is easy to locate the dock for a given host: the dock for host

named X .domain is the host named X dock.domain. There are some environments, however,

that include nameless hosts, most commonly, personal computers assigned an IP address

dynamically at boot time. Our system cannot currently accommodate nameless hosts.

In developing the tools for agent support of mobile computing, we have found that the operating

system infrastructure available to us limited the possible solutions. Speci�cally, the following low-

level operating systems features would enable more elegant solutions:

1. As mentioned above, we could avoid a busy-wait sensor for network connectivity if the op-

erating system could provide a ag or an interrupt every time the local network connection

goes up or down.

2. Network routers, and some hosts, have information about network connectivity and delays

that allow them to route packets to their destination. If that information were made available

to agents, we might be able to make much better predictions than those available from the

tra�c monitor agent.

Future work. There are many interesting areas for future work. As we mentioned, there are a few

small operating-system extensions that would be helpful, and we are investigating multi-destination

jump support. We plan to integrate our inter-agent message-passing with the docking system, so

that messages go through docks when necessary. We are also re�ning our bandwidth-prediction

tools. We are considering support for persistent storage, so that an agent may leave some of its

data (such as the results of a database search) at one host, carry a small part of its data along

with it, and yet be able to remotely access the saved data if necessary. Finally, we are developing

the traveling-salesperson application as a real-world demonstration of our ideas; most of the pieces

exist in simple forms and need to be extended and combined into the single application.

13

Summary. We have constructed a system for supporting mobile computing with mobile agents.

We argue that mobile agents allow a range of adaptive, exible applications in distributed hetero-

geneous systems with non-permanent network connections. We describe our experiences with using

this system, and identify a few operating-system extensions that would enable e�cient, reliable,

and simple mobile computing support through mobile agents.

Status

Agent Tcl has been publically released and is in active use at several sites in various information-

management applications. The public version provides migration, communication, and access to the

local screen and disk. Our internal version includes working prototypes of all of the support services

described above. We continue to extend and evaluate these implementations. More information

about Agent Tcl and our current research can be found on our WWW page.3

Acknowledgements

Many thanks to the students that have helped with the construction of the support agents described

in this paper: Ting Cai, Saurab Nog, and Vishesh Khemani built the \dock" system; Dawn Lawrie

and Mark Giles built the navigation system; David Hofer and Miranda Barrows built the network-

sensing tools; and Saurab Nog and David Hofer maintained the Agent 007 research lab. Thanks

also to the students of CS88/188 (Fall 1995) for their many discussions leading to these ideas.

Finally, thanks to ONR and AFOSR for their generous funding.

References

[AD93] Andrew Athan and Dan Duchamp. Agent-mediated message passing for constrained

environments. In Proceedings of the Mobile and Location-Independent Computing Sym-

posium, pages 103{107, August 1993.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transac-

tions on Computer Systems, 2(1):39{59, February 1984.

[BP88] Andrea J. Borr and Franco Putzolu. High performance SQL through low-level sys-

tem integration. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 342{349, 1988.

[BR] N. S. Borenstein and M. Rose. Safe Tcl. Available at

ftp://ftp.fv.com/pub/code/other/safe-tcl.tar.Z.

[BZCS96] Mary Baker, Xinhua Zhao, Stuart Cheshire, and Jonathan Stone. Supporting mobility

in MosquitoNet. In Proceedings of the 1996 Winter USENIX Conference, pages 127{

139, January 1996.

[CBC96] Kurt Cohen, Aditya Bhasin, and George Cybenko. Pattern recognition of 3D CAD

objects: Towards an electronic yellow pages of mechanical parts. International Journal

of Intelligent Engineering Systems, 1996. To appear.

3http://www.cs.dartmouth.edu/~agent/.

14

[CGH+95] David Chess, Benjamin Grosof, Colin Harrison, David Levine, Colin Parris, and Gene

Tsudik. Itinerant agents for mobile computing. Technical Report RC 20010, IBM T. J.

Watson Research Center, March 1995. Revised October 17, 1995.

[CGN96] Ting Cai, Peter A. Gloor, and Saurab Nog. Dartow: A workow management system

on the web using transportable agents. Technical Report PCS-TR96{283, Dept. of

Computer Science, Dartmouth College, May 1996.

[Coe94] Michael D. Coen. SodaBot: A software agent environment and construction system.

In Yannis Labrou and Tim Finin, editors, Proceedings of the CIKM Workshop on

Intelligent Information Agents, Third International Conference on Information and

Knowledge Management, Gaithersburg, Maryland, December 1994.

[Col95] Omniware technical overview. Colusa Software White Paper, 1995. Available from

http://www.colusa.com.

[Fal87] Joseph R. Falcone. A programmable interface language for heterogeneous systems.

ACM Transactions on Computer Systems, 5(4):330{351, November 1987.

[Gra95] Robert S. Gray. Agent Tcl: A transportable agent system. In James May�eld and Tim

Finin, editors, Proceedings of the CIKM Workshop on Intelligent Information Agents,

Fourth International Conference on Information and Knowledge Management (CIKM

95), Baltimore, Maryland, December 1995.

[Gra96] Robert S. Gray. Agent Tcl: A exible and secure mobile-agent system. In Mark

Diekhans and Mark Roseman, editors, Proceedings of the Fourth Annual Tcl/Tk Work-

shop (TCL '96), Monterey, California, July 1996. To appear.

[HCK95] Colin G. Harrison, David M. Chess, and Aaron Kershenbaum. Mobile agents: Are they

a good idea? Technical report, IBM T. J. Watson Research Center, March 1995.

[HH95] L. B. Huston and P. Honeyman. Partially connected operation. Computing Systems,

8(4):365{379, Fall 1995.

[IG93] John Ioannidis and Gerald Q. Maguire, Jr. The design and implementation of a mobile

internetworking architecture. In Proceedings of the 1993 Winter USENIX Conference,

pages 491{502, January 1993.

[JdT+95] Anthony D. Joseph, Alan F. deLespinasse, Joshua A. Tauber, David K. Gi�ord, and

M. Frans Kaashoek. Rover: A toolkit for mobile information access. In Proceedings

of the Fifteenth ACM Symposium on Operating Systems Principles, pages 156{171,

December 1995.

[Joh95] D. B. Johnson. Scalable support for transparent mobile host internetworking. Wireless

Networks, 1:311{321, October 1995.

[JvS95] Dag Johansen, Robbert van Renesse, and Fred B. Schneider. Operating system support

for mobile agents. In Proceedings of the Fifth Workshop Hot Topics in Operating

Systems (HotOS), pages 42{45, May 1995.

[KS92] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda �le

system. ACM Transactions on Computer Systems, 10(1):3{25, February 1992.

15

[MES95] Lily B. Mummert, Maria R. Ebling, and M. Satyanarayanan. Exploiting weak con-

nectivity for mobile �le access. In Proceedings of the Fifteenth ACM Symposium on

Operating Systems Principles, pages 143{155, December 1995.

[NCK96] Saurab Nog, Sumit Chawla, and David Kotz. An RPC mechanism for transportable

agents. Technical Report PCS-TR96{280, Dept. of Computer Science, Dartmouth

College, March 1996.

[NPS95] Brian B. Noble, Morgan Price, and M. Satyanarayanan. A programming interface for

application-aware adaptation in mobile computing. Computing Systems, 8(4):345{363,

Fall 1995.

[PB95] Evaggelia Pitoura and Bharat Bhargava. A framework for providing consistent and

recoverable agent-based access to heterogeneous mobile databases. ACM SIGMOD

Record, 24(3):44{49, September 1995.

[Pei96] Holger Peine. The ARA project. WWW page

http://www.uni-kl.edu/AG-Nehmer/Ara, Distributed Systems Group, Depart-

ment of Computer Science, University of Kaiserlautern, 1996.

[RHR+94] Peter Reiher, John Heidemann, David Ratner, Greg Skinner, and Gerald Popek. Re-

solving �le conicts in the Ficus �le system. In Proceedings of the 1994 Summer

USENIX Conference, pages 183{195, 1994.

[SG90] J. Stamos and D. Gi�ord. Remote evaluation. ACM Transactions on Programming

Languages and Systems, 12(4):537{565, October 1990.

[Sto94] A. D. Stoyenko. SUPRA-RPC: SUbprogram PaRAmeters in Remote Procedure Calls.

Software Practice and Experience, 24(1):27{49, January 1994.

[Sun94] The Java language: A white paper. Sun Microsystems White Paper, Sun Microsystems,

1994.

[TLKC95] Bent Thomsen, Lone Leth, Frederick Knabe, and Pierre-Yves Chevalier. Mobile agents.

ECRC external report, European Computer-Industry Research Centre, 1995.

[TTP+95] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spre-

itzer, and Carl H. Hauser. Managing update conicts in a weakly connected replicated

storage system. In Proceedings of the Fifteenth ACM Symposium on Operating Systems

Principles, pages 172{183, December 1995.

[Wel95] Brent Welch. Practical Programming in Tcl and Tk. Prentice Hall, 1995.

[Whi94a] James E. White. Mobile agents make a network an open platform for third-party

developers. IEEE Computer, 27(11):89{90, November 1994.

[Whi94b] James E. White. Telescript technology: The foundation for the electronic marketplace.

General Magic White Paper, 1994.

[Wu95] Yunxin Wu. Advanced algorithms of information organization and retrieval. Master's

thesis, Thayer School of Engineering, Dartmouth College, 1995.

16

[WYOT93] Hiromi Wada, Takashi Yozawa, Tatsuya Ohnishi, and Yasunori Tanaka. Mobile com-

puting environment based on internet packet forwarding. In Proceedings of the 1993

Winter USENIX Conference, pages 503{517, January 1993.

17

