
A Summary of the Discussion at the Planning Meeting for Sprint 6

Overview of the Sprint
KitchIntel is now starting to create the distributed version of the system. The sales and marketing team is in the process of 
trying to sell an early release of the system to a university dining facility. Hence, as part of this spring the team needs to 
create a proof of concept demonstration.

Overview of My Commitments
I have agreed to add the ability to have a remote device receive information about “dispense events”. The messages need not
be received reliably, since this is only intended to give some indication of activity. Hence, we have agreed that UDP seems 
appropriate. The remote device must be able to receive messages from multiple dispensers, but they can be "queued" (i.e., 
they needn't be handled simultaneously). The design we agreed upon is summarized below.

I have also agreed to add the ability to have the Store run on a remote device. In this case, all messages between the 

Store and the Restocker (in both directions) must be transmitted and received, so we agreed to use TCP. It was pointed

out that the connection must not be maintained while the order is being "processed" since, when the system is actually 
deployed, the "processing" could take multiple days.

I have also agreed to create a proof of concept demonstration for these portions of the system. The specifications for this 

demo are summarized below.



The Design of the System
The team agreed to the following design for the portion of the system that deals with “dispense events”. The essence of the 
design is to use the Proxy Pattern. This involves creating a DispenserObserverUDPStub that implements the 
DispenserObserver interface. It’s handleDispenseEvent() method sends a String representation of the 
relevant information to a DispenserObersverUDPSkeleton on the remote machine, that forwards it to an actual 
DispenserObserver running on the remote machine. This is illustrated in the following UML class diagram.

This should enable us to use both local and remote DispenserObserver objects without making changes to the existing
code.

Specifications for My Portion of the Demonstration
For the demo, we agreed that the dining facility must have:

• One machine with Canister containing Cheerios.

• One machine with a Canister containing Raisin Brans.

• One machine with a Canister containing Cap’n Crunch.

• One machine with a BreadBox containing wheat bread.

• One machine with a BreadBox containing white bread.

Each of these machines must also have it’s own DispenserDisplay and Restocker. In addition, each of these 

machines must have it’s own DispenserObserverUDPStub.

There must also be:

• One machine running a DispenserObserverUDPSkeleton (and associated DispenserDisplay). This 

machine will be used by the manager of the dining facility to roughly track the activity in the facility.

• One machine running a Store.

So, in total, the demo will involve seven different machines. The five machines running Dispenser objects will all 

communicate with one remote machine using UDP and with one remote machine using TCP.


