Kitchintel
&549Control System

A Summary of the Commitments I made at the Planning Meeting for Sprint 1

Class Diagram
For this sprint, I committed to implementing the interfaces and classes illustrated in the following UML class diagram:

measurerment

<<lntefaces=
Amount
+changeBy(other : Amount) : void
+getUnit() : String
+getialue() : int

iy

i
AbstractAmount
+changeBy(other : Amount) : void
+compareTolother : Amount) © int

#setVvaluelvalue : int) - void

CompoundNumber Piece
-valuelnSmalls - int -value - int
+CompoundMumber() -unit - String
+CompoundMurmberilarges : int, smalls : int) +Pieceivalue : int, unit : String)
+changeByilarges : int, smalls - int) : void +getlnit() : String
#getiargesText() : String +getValuel] : String
#getsmalisText() : String #setValuelvalue : int) : void
#getsSmallsPer_arge(] : int +toStringl) : String
+getUnit() : String

+getvaluel) : int
+multiplyBy(m : double) : void Luses
#setValuelvalue : int) : void
+toString() : String

Uses

Weight

+Weight()

+Weightipounds : int, ounces : int)
#getlargesText() - String
#getSmallsText() : String
#getSmallsPerLargel) : int

<utility ==

Pluralizer
+formin :int, singular - String, plural - String) : String
+regularin : int, noun : String) : String

Specifications
In addition to the specifications that are obvious from the UML class diagram, the team agreed to the following.

Pluralizer

The Pluralizer class is a utility class that can be used to create plural forms of words from singular forms. The form()
method is passed both the number, the singular form and the plural form, and returns the singular form when the number is
1 and the plural form otherwise. One might use it as follows:

System.out.println(length + " " + Pluralizer.form(length, "inch", "inches");

The regular () method is used for regular pluralizations (i.e., those that just involve appending an “s”). One might use it
as follows:

System.out.println(weight + " " + Pluralizer.regular(weight, "pound");

Amount

The Amount interface describes the capabilities of the amount of something that might get used in an intelligent kitchen.
For example, the amount of butter to use in a recipe, the amount of bread in the pantry, or the amount of ground beef in the
kitchen.

Piece

The Piece class is an encapsulation of an Amount that is measured by the individual piece. For example, in some
contexts, bread is measured by the slice. So, a Piece object for the bread in a sandwich would have a value attribute of 2
and a unit attribute of "slice".

CompoundNumber

The CompoundNumber class is a partial encapsulation of a quantity that is expressed in terms of two units (e.g., 6 feet, 2
inches or 3 pounds, 12 ounces). This class may be generalized in the future to an arbitrary number of units, however, it is
currently designed for only two units, called the “larges” (e.g., feet or pounds in the previous example) and the “smalls”
(e.g., inches and ounces in the previous example). The team agreed that it must only store the valueInSmalls (e.g., 74
inches or 60 ounces in the previous example) and calculate the two units when needed (e.g., in the toString() method).

In addition to the obvious specifications, this methods in this class must satisfy the following:
multiplyBy () — Must truncate the result of the multiplication.

toString() - For the two examples above, must return the String objects:

"6 feet, 2 inches"
and

"3 pounds, 12 ounces"

(without the quotes) respectively. It must use the getLargesText (), getSmallsText(), and
getSmallsPerLarge() methods. It must also use the Pluralizer class. The getUnit () method must return the value
returned by getSmallsText ()and the getValue () method must return the value in smalls.

Weight
The Weight class is a CompoundNumber that handles quantities measured in pounds and ounces. The text for pounds is
"pound" and the text for ounces is "ounce".

