
Appendix D

A Brief Introduction to Waves

In order to understand the perception of auditory and visual content it is necessary to
understand the physics of sound and light. In order to understand sound and light it is
necessary to understand waves.

D.1 Mechanical Waves

A mechanical pulse is a single disturbance that moves through a a sequence of interact-
ing particles (called a medium).1 A mechanical periodic wave is a periodic disturbance
that moves through a medium, transporting energy as it moves.

It is important to remember that the individual particles do not move very far. Each
particle oscillates around its equilibrium position; its average position does not change.
As a particle interacts with its neighbors it transfers some of its energy to them, caus-
ing them to oscillate. As this process continues, the energy is transported throug the
medium.

Your first meaningful exposure to this phenomenon was probably water waves.
Hence, much of your intution about waves comes from your experience with water
waves. However, we are going to start instead with waves in a spring.

We view a spring as a medium consisting of individual coils. They are interest-
ing because there are two ways to generate waves in a spring, both of which become
important in the dicussions that follow.

First suppose that the wave is generated my moving the left end of the spring
“back and forth” in the horizontal direction. This creates a series of compressions
(areas in which the particles are closer than in equilibrium) and rarefactions areas in
which the particles are farther apart than in equilibrium). If we take a “snapshot”
of a spring being moved “back and forth”, it might look like the illustration in Fig-
ure D.1-1 on the next page.

1As discussed in Section 1.2 on page 8, the word “medium” is used in a variety of different ways in
different disciplines. We only use it to mean a sequence of interacting particles when discussing waves.
Elsewhere, we use it in the sense of Definition 1.3 on page 10.
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Figure D.1-1: A Longitudinal Wave

Moving the spring “back and forth” in this way generates a longitudinal wave; the
particles (in this case, the coils) move parallel to the direction in which the energy is
transferred. In other words, the particles move parallel to the direction in which the
wave moves (i.e. both the particles and the wave move “back and forth”).

Now suppose that the wave is generated by moving the left end of the spring “up
and down” in the vertical direction. This creates a series of peaks (areas in which the
particles are “higher” than in equilibrium) and troughs areas in which the particles are
“lower” than in equilibrium). If we take a “snapshot” of a spring being moved “up and
down”, it might look like the illustration in Figure D.1-2 on the facing page.

Moving the spring “back and forth” in this way generates a transverse wave; the
particles move perpenducular to the direction in which the energy is transferred. In
other words, the particles move perpendicular to the direction in which the wave moves
(i.e. the particles move “up and down” but the wave move “back and forth”).

D.2 Characterizing Waves in the Position Domain

Though the two kinds of waves, longitudinal and transverse, are physically very differ-
ent, we can abstract away from those differences fairly easily. We do so by introducing
the notion of the amplitude of a wave.

For a longitudinal wave in our spring, the amplitude is related to the number of coils
per unit length. However, to “center” the amplitude, we subtract off the number of coils
per unit length when the spring is in equilibrium (i.e. resting). This is illustrated in the
Figure D.2-1 on the next page in which the spring is shown while being moved “back
and forth” and while at rest.

The dotted rectangle in Figure D.2-1 on the facing page indicates the fixed unit of
length used to measure the amplitude, and the vertical line indicates the position at
which the amplitude is being measured. At the indicated position, there are two coils
per unit length when the spring is at rest (i.e. in the bottom spring) and there are four
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Figure D.1-2: A Transverse Wave

coils per unit length in the wave (i.e. in the top spring). This means that the amplitude
at this position is two. The rectangle and line are then moved slightly and the process
is repeated, yielding the graph in Figure D.2-2 on the next page.

For a transverse wave, the amplitude is related to the height of the coils. However,
to “center” the amplitude, we subtract off the height of the coils when the spring is
in equilibrium. This is illustrated in Figure D.2-3 on page 401 in which the spring is
shown while being moved “up and down” and while at rest.

The vertical line in Figure D.2-3 on page 401 indicates the position at which the
amplitude is being measured. (When the coil in the spring at rest is below the coil
in the wave the amplitude is positive, in the opposite situation the amplitude is nega-
tive.) The line is then moved slightly and the process is repeated, yielding the graph in

Figure D.2-1: A Spring: Moving and at Rest
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Figure D.2-2: A Graph of Amplitude versus Position for a Longitudinal Wave

Figure D.2-4 on page 402.
The wavelength of a periodic wave can be though of as the distance one has to

travel along the wave until it “repeats”. The wavelength is usually measured in meters
(or parts thereof). and denoted by λ.

When two waves meet while traveleing through the same medium they are said to
interfere with each other. The principle of superposition says that when two waves
interfere, the resulting displacement of the medium at any location is the algebraic
sum of the displacements of the individual waves at that same location. This leads is
to distinguish between constructive interference (in which the displacements are both
positive) and destructive intereference (in which one displacement is positive when the
other is negative).

D.3 The Time Domain

The graphs discussed thus far involve the amplitude of the wave versus the position
along the wave. That is, we picked a point in time and measured the amplitude of the
wave at each position along the wave. When we use this approach we are considering
the wave in the position domain.

Alternatively, since a wave varies periodically in time as well as space, we could
have picked a particular position along the wave and measured the amplitude at that
position over time. This approach leads to a graph of the amplitude versus time as
shown in Figure D.3-1 on page 403. When we use this approach we are condiering the
wave in the time domain.

In the time domain, a cycle is a portion of a wave from rest to crest to rest to trough
to rest, and the period is the time required for a cycle (measured in cycles per second).
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Figure D.2-3: A Spring: Moving and at Rest

The period can also be thought of as the time one has to wait at a position in space for
the pattern to repeat.

The frequency, denoted by f , is the reciprocal of the period and, hence, is measured
in cycles per second (i.e. hertz). The speed of a wave, denoted by v, is the product of
its wavelength and frequency.2 That is:

v = λf (D.1)

The speed (or velocity) of an object normally refers to its change in position over time.
For waves, we have to choose a particular point on the wave. The easiest way to do this
is to use a particular crest.

D.4 The Frequency Domain

So far we have considered the position domain and the time domain. While these ap-
proaches are often both useful and convenient, there are times when they are somewhat
awkward to use. An alternative approach is to consider the frequency domain.

Figure D.4-1 on page 403 illustrates a 400Hz periodic wave in both the time do-
main (at the top) and the frequency domain (at the bottom). This particular example is
called a line spectrum because the wave is strictly periodic. Quasiperiodic waves have
harmonic spectra and aperiodic waves have continuous spectra.

Converting from the time domain to the frequency domain often involves the use of
the Fourier transform. This approach is named after the mathematician who discovered
that:

• All periodic waves may be expressed as the sum of a series of sinusoidal waves;

2Since we know the speed of light, we can easily calculate the wavelength of an electromagnetic wave
from its frequency, and vice versa.
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Figure D.2-4: A Graph of Amplitude verses Position for a Transverse Wave

• These waves are all integer multiples (called harmonics) of the fundamental fre-
quency; and

• Each harmonic has its own amplitude and phase.

Fourier analysis is used to determine the component frequencies of a complicated wave.
The way in which this is accomplished is beyond the scope of this book. However, the
fact that a complicated wave can be represented as a sum of sinusoidal waves is relevant
in several settings.
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Figure D.3-1: A Graph of Amplitude versus Time
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Figure D.4-1: A Wave in the Time and Frequency DOmains
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