
 AcademiCS Application Framework
Specifications for the Third Set of Milestones and Deliverables

The third set of milestones/deliverables is concerned with the opening of documents and quitting within the
application framework.

1. Glossary

Action A task that is executed in response to user interaction with a GUI widget (e.g., a menu
item or button).

Localization The adaptation of a product to meet the requirements of a particular locale.

Worker A task that can be executed in a thread other than the event dispatch thread.

2. Engineering Design
The relationships between the various classes that must be implemented for the first set of
milestones/deliverables is illustrated in the UML class diagram (that is available as an SVG file). In addition to
the specifications in that diagram, the classes/interfaces must comply with the following specifications.

2.1 The AbstractLocalizedAction Class
An AbstractLocalizedAction is a specialized AbstractAction that uses the default Locale and a
ResourceBundle to set its NAME.

It uses the name it is given as the ACTION_COMMAND_KEY and uses the following conventions for the
SMALL_ICON and LARGE_ICON_KEY:

SMALL_ICON = "/edu/jmu/cs/academics/resources/" + name + "-16x16.png"
LARGE_ICON_KEY = "/edu/jmu/cs/academics/resources/" + name + "-32x32.png"

Note that, for simplicity, this class does not set the MNEMONIC_KEY or ACCELERATOR_KEY since they would
also need to be translated.

The getString() method returns the localized version of the given key.

2.2 The AbstractDocumentAction Class
This class encapsulates actions that can be performed on documents. The parameter D indicates the class of the
document.

The getPropertyChangeListenerNames() method which must be implemented by concrete
specializations gets the names of all of the action's PropertyChangeListener objects.

-1-

 AcademiCS Application Framework
Specifications for the Third Set of Milestones and Deliverables

The setDocumentManager() method must: remove all of the action's PropertyChangeListener
objects from the current DocumentManager (if there is one) referred to in the manager attribute, update the
current DocumentManager to be the "new" DocumentManager (i.e., referred to by the parameter named
dm), and must add all of the action's PropertyChangeListeners to the "new" DocumentManager.

2.3 The Quit Class
The Quit class is an encapsulation of an action that quits/exits an application. The parameter D denotes the
class of the document that the application processes.

It must listen to DOCUMENT_ACTIVATED, DOCUMENT_CLOSED, and DOCUMENT_EDITED property change
events in order to enforce the appropriate work flow (since the Quit action must only be enabled if the
document is empty or unmodified). The propertyChange() method must enforce this work flow.

The document attribute must be used to keep track of the active document (when one is activated). It must be
null when when the active document is closed.

This class must be a WindowListener because it must handle windowClosing() messages (generated by
the user closing the window). If the user attempts to close the window when the action is disabled, the user must
be presented with a message dialog containing the WARNING_QUIT message.

The actionPerformed() method, which contains the logic for the action, must quit/exit the application.

Note that this class must be localized because it presents information, directly or indirectly, to the user.

2.4 The FileTypeFilter Class
A FileTypeFilter can be used to filter files on the basis of on or more file types (i.e., the suffix after the
last dot). For convenience, it implements both common FileFilter interfaces. It must provide the ability to
accept directories so that the user of a file dialog can navigate through the file system using such a filter. This
capability must be provided by default.

The addAcceptableType() method must only add the type to the collection of acceptable types if it is not
null, not empty, and not already in the collection.

The accept() method must return:
• false if the File is null;
• true if the filter should accept directories and the File is a directory;
• true if the name of the File ends in a . followed by any of the acceptable suffixes;
• false otherwise.

-2-

 AcademiCS Application Framework
Specifications for the Third Set of Milestones and Deliverables

The getLastAccepted() method must return the last type that was accepted in the most recent call to
accept() that returned true. If the last call to accept() returned false, then getLastAccepted()
must return null.

The size() method must return the number of currently acceptable types.

The createFilterGroup() method must create a collection of from an array of file types. The last element
in the collection is a filter that accepts all of the file types. The other elements in the collection accept a single
file type (and are sorted by type). The description of the last filter must be the given description. The description
of the other filters must be the file type.

Note that this class uses a Vector(rather than, say an ArrayList) for the acceptableTypes attribute
because the Vector class provides thread safety. While the required thread safety can be provided in other ways,
this is the simplest way to provide it.

2.5 The AbstractEditableReadingWorker Class
An AbstractEditableReadingWorker is a worker that reads an Editable. The parameter P denotes
the class of the Product, the parameter F denotes the class of the factory that knows how to produce P, and the
parameter S denotes the class of the source used by the factory (or Void).

The done() method will be classed in the event dispatch thread when the task is "completed". Hence, if the
task was not cancelled, it must assign the result of calling get() to the attribute named result. If this call
results in an exception being thrown, it must display an error dialog containing the localized String for
ERROR_IO_OPEN.

The doInCallersThread() method must call the readInCallersThread() method.

Note that this class must be localized (since it will, directly or indirectly, present information to the user).

2.6 The StringReadingWorker Class
A StringReadingWorker is a worker that reads a String representation of a document. The parameter P
denotes the class of the Product, and the parameter F denotes the class of the factory that knows how to
produce P.

The readInCallersThread() method must read all of the (assumed to be UTF-8) characters from the
attribute named file into a String and then use the factory to create the product.

The doInBackground() method must call the readInCallersThread() method.

2.7 The AbstractModalDialog Class
The AbstractModalDialog class is an abstract modal JDialog that can be specialized to create dialogs
for specific purposes. It must be possible to include either a cancel button, or an OK button, both, or neither.

-3-

 AcademiCS Application Framework
Specifications for the Third Set of Milestones and Deliverables

The createMainPanel() method will be implemented by concrete specializations. In those specializations
it will create the JComponent that constitutes the main panel of the dialog.

The showDialog() method must set the owning object's location (centered on the owner) and then make the
owning object visible. It must return JOptionPane.CANCEL_OPTION if the user clicks on the cancel button
or closes the dialog. Otherwise it must return JOptionPane.OK_OPTION.

It must be an ActionListener because it must respond to ActionEvent objects generated by the user
clicking on the cancel button or OK button. It must be a WindowListener because it must respond to
WindowEvent objects generated by the user closing the window.

Note that this class must be localized (since it will present information to the user).

2.8 The BackgroundTaskDialog Class
A BackgroundTaskDialog is a modal JDialog that can be used to cancel and show the status of a
background task (i.e., a task being executed using a SwingWorker). The parameter T denotes the result type
returned by a SwingWorker object's doInBackground() and get() methods. The parameter V denotes
the type used for carrying out intermediate results by a SwingWorker object's publish() and process()
methods.

Visually, it must contain a JProgressBar and a cancel button. The JProgressBar may have its
indeterminate attribute set, since it will be difficult to make accurate estimates of how long tasks will take
and how complete they are.

It's internal TimeoutTask class is used to cancel the task if too much time has elapsed.

It's execute() method must execute the background task, start the countdown timer (if the timeout
attribute is greater than 0), and show itself (unless the task has already completed). After the dialog is made
invisible this method must cancel the countdown timer. If the dialog became invisible because the cancel button
was pressed, it must also cancel the task

This class must implement the PropertyChangeListener interface because it must observe the task.
Specifically, the propertyChange() method must determine if the task has completed and, if so, must
cancel the countdown timer and make the dialog invisible.

2.9 The AbstractOpen Class
An AbstractOpen object is an action that reads reads a representation of a document from a File (in a
background/worker thread), after prompting the user to select the File using a JFileChooser. The
parameter D denotes the class of the document to be read/created, the parameter F denotes the class of the
factory that knows how to create D, and the parameter S denotes the class of the source used by the factory (or
Void).

-4-

 AcademiCS Application Framework
Specifications for the Third Set of Milestones and Deliverables

It must listen to DOCUMENT_ACTIVATED, DOCUMENT_CLOSED, and DOCUMENT_EDITED property change
events in order to enforce the appropriate work flow (since the AbstractOpen action must only be enabled if
the document is empty or unmodified. The propertyChange() method must enforce this work flow.

The Configuration attribute named configuration must be used to determine the current
directory/folder (using the key "Current_Directory") and it must be updated whenever it changes (e.g.,as
a result of the user selecting a File with a file dialog).

The actionPerformed() method, which contains the logic for the action, must display a file dialog and
handle the user's response. If the user enters a File that does not exist, it must display a message dialog that
displays ERROR_IO_OPEN. Otherwise, it must invoke readUsingWorker() for the File.

The readUsingWorker() method must create an appropriate reading worker (using the createReader()
method), create a BackgroundTaskDialog that uses that reading worker, execute the dialog, dispose of the
dialog, record the result of the reading worker, and inform the DocumentManager that a document has been
created.

The readUsingCallersThread() method must create an appropriate reading worker (using the
createReader() method) and invoke its doInCallersThread() method.

The setFileTypes() method must add "choosable" filters to the JFileChooser. It must add one filter
for each file type in the array and one filter that accepts all of the file types in the array. The filter that accepts all
of the types must be the default. Note that the FileTypeFilter class has a factory method that will be useful
in this regard.

2.10 The OpenString Class
An OpenString object is an action that reads reads a String representation of a document from a File (in
a background/worker thread), after prompting the user to select the File using a JFileChooser. The
parameter D denotes the class of the document to be read/created and the parameter F denotes the class of the
factory that knows how to create D.

The createReader() method simply returns a StringReadingWorker for the given file and
factory, using the owning object's parent (obtained using its getParent() method) as the parent
component for the StringReadingWorker.

-5-

