Programming Languages (PL)

PL1. Overview of programming languages [core]

PL2. Virtual machines [core]

PL3. Introduction to language translation [core]

PL4. Declarations and types [core]

PL5. Abstraction mechanisms [core]

PL6. Object-oriented programming [core]

PL7. Functional programming [elective]

PL8. Language translation systems [elective]

PL9. Type systems [elective]

PL10. Programming language semantics [elective]

PL11. Programming language design [elective]

A programming language is a programmer’s principal interface with the computer. More

than just knowing how to program in a single language, programmers need to understand

the different styles of programming promoted by different languages. In their

professional life, they will be working with many different languages and styles at once,

and will encounter many different languages over the course of their careers.

Understanding the variety of programming languages and the design tradeoffs between

the different programming paradigms makes it much easier to master new languages

quickly. Understanding the pragmatic aspects of programming languages also requires a

basic knowledge of programming language translation and runtime features such as

storage allocation.

PL1. Overview of programming languages [core]

Minimum core coverage time: 2 hours

Topics:

History of programming languages

Brief survey of programming paradigms

– Procedural languages

– Object-oriented languages

– Functional languages

– Declarative, non-algorithmic languages

– Scripting languages

The effects of scale on programming methodology

Learning objectives:

1. Summarize the evolution of programming languages illustrating how this history has

led to the paradigms available today.

2. Identify at least one distinguishing characteristic for each of the programming

paradigms covered in this unit.

3. Evaluate the tradeoffs between the different paradigms, considering such issues as

space efficiency, time efficiency (of both the computer and the programmer), safety,

and power of expression.

4. Distinguish between programming-in-the-small and programming-in-the-large.

CC2001 Computer Science volume – 114 –

Final Report (December 15, 2001)

PL2. Virtual machines [core]

Minimum core coverage time: 1 hour

Topics:

The concept of a virtual machine

Hierarchy of virtual machines

Intermediate languages

Security issues arising from running code on an alien machine

Learning objectives:

1. Describe the importance and power of abstraction in the context of virtual machines.

2. Explain the benefits of intermediate languages in the compilation process.

3. Evaluate the tradeoffs in performance vs. portability.

4. Explain how executable programs can breach computer system security by accessing

disk files and memory.

PL3. Introduction to language translation [core]

Minimum core coverage time: 2 hours

Topics:

Comparison of interpreters and compilers

Language translation phases (lexical analysis, parsing, code generation, optimization)

Machine-dependent and machine-independent aspects of translation

Learning objectives:

1. Compare and contrast compiled and interpreted execution models, outlining the

relative merits of each..

2. Describe the phases of program translation from source code to executable code and

the files produced by these phases.

3. Explain the differences between machine-dependent and machine-independent

translation and where these differences are evident in the translation process.

PL4. Declarations and types [core]

Minimum core coverage time: 3 hours

Topics:

The conception of types as a set of values with together with a set of operations

Declaration models (binding, visibility, scope, and lifetime)

Overview of type-checking

Garbage collection

Learning objectives:

1. Explain the value of declaration models, especially with respect to programming-inthe-

large.

2. Identify and describe the properties of a variable such as its associated address, value,

scope, persistence, and size.

3. Discuss type incompatibility.

4. Demonstrate different forms of binding, visibility, scoping, and lifetime management.
CC2001 Computer Science volume – 115 –

Final Report (December 15, 2001)

5. Defend the importance of types and type-checking in providing abstraction and

safety.

6. Evaluate tradeoffs in lifetime management (reference counting vs. garbage

collection).

PL5. Abstraction mechanisms [core]

Minimum core coverage time: 3 hours

Topics:

Procedures, functions, and iterators as abstraction mechanisms

Parameterization mechanisms (reference vs. value)

Activation records and storage management

Type parameters and parameterized types

Modules in programming languages

Learning objectives:

1. Explain how abstraction mechanisms support the creation of reusable software

components.

2. Demonstrate the difference between call-by-value and call-by-reference parameter

passing.

3. Defend the importance of abstractions, especially with respect to programming-inthe-

large.

4. Describe how the computer system uses activation records to manage program

modules and their data.

PL6. Object-oriented programming [core]

Minimum core coverage time: 10 hours

Topics:

Object-oriented design

Encapsulation and information-hiding

Separation of behavior and implementation

Classes and subclasses

Inheritance (overriding, dynamic dispatch)

Polymorphism (subtype polymorphism vs. inheritance)

Class hierarchies

Collection classes and iteration protocols

Internal representations of objects and method tables

Learning objectives:

1. Justify the philosophy of object-oriented design and the concepts of encapsulation,

abstraction, inheritance, and polymorphism.

2. Design, implement, test, and debug simple programs in an object-oriented

programming language.

3. Describe how the class mechanism supports encapsulation and information hiding.

4. Design, implement, and test the implementation of “is-a” relationships among objects

using a class hierarchy and inheritance.

5. Compare and contrast the notions of overloading and overriding methods in an

object-oriented language.
CC2001 Computer Science volume – 116 –

Final Report (December 15, 2001)

6. Explain the relationship between the static structure of the class and the dynamic

structure of the instances of the class.

7. Describe how iterators access the elements of a container.

PL7. Functional programming [elective]

Topics:

– Overview and motivation of functional languages

– Recursion over lists, natural numbers, trees, and other recursively-defined data

– Pragmatics (debugging by divide and conquer; persistency of data structures)

– Amortized efficiency for functional data structures

– Closures and uses of functions as data (infinite sets, streams)

Learning objectives:

1. Outline the strengths and weaknesses of the functional programming paradigm.

2. Design, code, test, and debug programs using the functional paradigm.

3. Explain the use of functions as data, including the concept of closures.

PL8. Language translation systems [elective]

Topics:

Application of regular expressions in lexical scanners

Parsing (concrete and abstract syntax, abstract syntax trees)

Application of context-free grammars in table-driven and recursive-descent parsing

Symbol table management

Code generation by tree walking

Architecture-specific operations: instruction selection and register allocation

Optimization techniques

The use of tools in support of the translation process and the advantages thereof

Program libraries and separate compilation

Building syntax-directed tools

Learning objectives:

1. Describe the steps and algorithms used by language translators.

2. Recognize the underlying formal models such as finite state automata, push-down

automata and their connection to language definition through regular expressions and

grammars.

3. Discuss the effectiveness of optimization.

4. Explain the impact of a separate compilation facility and the existence of program

libraries on the compilation process.

PL9. Type systems [elective]

Topics:

Data type as set of values with set of operations

Data types

– Elementary types

– Product and coproduct types

– Algebraic types

– Recursive types

– Arrow (function) types

– Parameterized types

CC2001 Computer Science volume – 117 –

Final Report (December 15, 2001)

Type-checking models

Semantic models of user-defined types

– Type abbreviations

– Abstract data types

– Type equality

Parametric polymorphism

Subtype polymorphism

Type-checking algorithms

Learning objectives:

1. Formalize the notion of typing.

2. Describe each of the elementary data types.

3. Explain the concept of an abstract data type.

4. Recognize the importance of typing for abstraction and safety.

5. Differentiate between static and dynamic typing.

6. Differentiate between type declarations and type inference.

7. Evaluate languages with regard to typing.

PL10. Programming language semantics [elective]

Topics:

Informal semantics

Overview of formal semantics

Denotational semantics

Axiomatic semantics

Operational semantics

Learning objectives:

1. Explain the importance of formal semantics.

2. Differentiate between formal and informal semantics.

3. Describe the different approaches to formal semantics.

4. Evaluate the different approaches to formal semantics.

PL11. Programming language design [elective]

Topics:

General principles of language design

Design goals

Typing regimes

Data structure models

Control structure models

Abstraction mechanisms

Learning objectives:

1. Evaluate the impact of different typing regimes on language design, language usage,

and the translation process.

2. Explain the role of different abstraction mechanisms in the creation of user-defined

facilities.
