Advanced Programming - CS239

Department of Computer Science

LAB 8 : DEVELOPING A FIXEDTERMSAVINGSACCOUNT

CLASS

Getting Ready: Before going any further you should:

1. Make a directory on your N: drive for this lab. (Note: You will need to use this class in future programming assignments and labs.)

2. Setup your development environment.

Tasks: In this lab you will complete a stubbed-out class and develop a driver for testing it.

A colleague of yours created the following stubbed-out FixedTermSavingsAccount class from a Software Requirements Specification.

import java.text.*;

/**

* A savings account that does not allow withdrawals

* (except upon graduation) and does not earn interest.

*

* @author Prof. David Bernstein, James Madison University

* @version 0.1 (Stub)

*/

public class FixedTermSavingsAccount

{

// Attributes of objects

private double balance;

private final int accountNumber;

private NumberFormat accountFormatter;

private String userName;

// Attributes of the class

private static int nextAccountNumber;

/**

* Explicit Value Constructor

*

* @param user The JMU username of the account holder

*/

public FixedTermSavingsAccount(String user)

{

// Initialize userName

// Initialize the accountNumber

accountNumber = nextAccountNumber;

// Update nextAccountNumber for the next object

// Construct and initialize accountFormatter so that

// it always creates String objects with 10 digits

// Initialize the balance

}

/**

* Compare the account number on this account to the

* account number on a given account

*

* @param other The given account

* @return -1/1 if this account comes before/after the given account

*/

public int compareTo(FixedTermSavingsAccount other)

{

return 1;

}

/**

* Deposit money into this account

*

* @param amount The amount of the deposit (should be positive)

* @return A message describing the deposit

*/

public String deposit(double amount)

{

// If amount <= 0.0 create an error message

// otherwise create an informational message and

// increase balance

return "No deposit was made";

}

/**

* Get the ID associated with this account

*

* The ID consists of the characters "FT-" followed

* by the 10-digit account number

*

* @return The ID

*/

public String getAccountID()

{

return "FT-0000000000";

}

/**

* Get the number associated with this account

*

* The number consists of s String containing

* the 10-digit account number

*

* @return The account number

*/

public String getAccountNumber()

{

return "0000000000";

}

/**

* Get the current balance

*

* @return The balance

*/

public double getBalance()

{

return 0.0;

}

/**

* Get a String description of the current balance

*

* The description consists of the String "Balance: "

* followed by the balance (with a leading $, two digits

* after the decimal place, and a ',' as the grouping character)

*

* @return A description of the balance

*/

public String getBalanceMessage()

{

return "Balance: $1,000,000.00";

}

/**

Get the JMU username of the account holder

*

* The STring returned consists of the username (which

* is 8 characters or less) followed by the String

* "@jmu.edu"

*

* @return The username

*/

public String getUserName()

{

return "bernstdh@jmu.edu";

}

Copyright © 2004

/**

* Set the current balance

* Note: This method should be used with caution

* (We'll learn how to fix this later)

*

* @param balance The new balance

*/

public void setBalance(double balance)

{

}

}

Name __

You will need to turn in this and following pages for this lab.

1. Create a file name FixedTermSavingsAccount.java containing this stubbed-out class.

	Done
	 Yes No

2. Implement the constructor, getAccountNumber(), getBalance(), getUserName(), and setBalance() methods. Also, write a driver that can test your implementation and actually test it.

	Insert the results of your test here

3. Implement the getAccountID() method [which should call getAccountNumber()]. Also, write a driver that can test your implementation and actually test it.

	Insert the results of your test here

4. Implement the getBalanceMessage() method and modify your driver appropriately. [To Think About: Should this method use the balance attribute directly or should it use

getBalance()?]

	Done
	 Yes No

5. Implement the deposit() method, modify your driver appropriately, and test your

implementation. [To Think About: Should this method use the balance attribute directly or should it use getBalance() and setBalance()?]

	Done
	 Yes No

6. Implement the compareTo() method, modify your driver appropriately, and test your

implementation.
	Insert the results of your test here

