6.2 What is the relationship between entities and tables? Between attributes and columns?

When transforming a data model into a database design we create a table for each entity in the database design and a column for each attribute in the database design.

6.3 Why is the choice of the primary key important?

The choice of a primary key is important because:

(1)
The DBMS will use the primary key to facilitate searching and sorting of table rows.

(2)
Some DBMSs use the primary key to organize table storage.

(3)
Most DBMS products create indexes and other data structures using the value of the primary key.

6.4 What are the three characteristics of an ideal primary key?

The three characteristics of an ideal primary key are short, numeric and fixed.

6.6 When should you use a surrogate key?

A surrogate key is used when a table does not have a unique key, or when a unique key is too long, non-numeric and may change.

6.7 Describe two disadvantages of surrogate keys.

First, foreign keys that are based on surrogate keys have no meaning to the users. The second disadvantage of surrogate keys arises when data is shared among different databases. It is possible for two different SALE_ORDER rows, in two different databases, to have the same value of ID.

6.10 Name four column properties.

Four column properties are: null status, data type, default value, and data constraints.

6.11 Explain why primary keys may never be null, but alternate keys can be null.

Primary keys can never be null since each row must have a unique identifier. Alternate keys can be null because one use of designating a column as an alternative key is simply to guarantee uniqueness of populated fields. Thus the value of an alternative key can be NULL, but if it has a value then the value must be unique.

6.18 What tasks should be accomplished when verifying normalization of a database design?

When verifying normalization of a database design, make sure that all tables are in BCNF and 4NF (all multivalued dependencies removed to separate tables).

6.19 Describe two ways to represent a 1:1 strong entity relationship. Give an example other than one in this chapter.

A 1:1 strong entity relationship can be represented by placing one of the primary keys as a foreign key in either of the two entities. Thus, there are two ways to represent the relationship. However, one of these may be preferred depending on maximum cardinality requirements.

In the Review Questions to Chapter Five, we used an example of a Real Estate Agency. We will continue to use that example for the Chapter Six Review Questions.

In the Real Estate Agency example, each AGENT must use an agency car when on agency business. Further, to keep costs down, the agency keeps exactly enough cars for the agents. Therefore, each AGENT must have a CAR, and each CAR must be assigned to an AGENT. This is a 1:1, M-M relationship.

This is a 1:1 strong entity relationship. The relationship can be represented by:

(1)
Placing the primary key of AGENT in CAR as a foreign key, or

(2)
Placing the primary key of CAR in AGENT as a foreign key.

6.20 Describe how to represent a 1:N strong entity relationship. Give an example other than one in this chapter.

A 1:N strong entity relationship can be represented by placing the primary key of the parent entity (the “1” entity) in the child entity (the “N” entity) as a foreign key.

In the Real Estate Agency example, each CLIENT must be assigned to an AGENT, but there may be AGENTs who currently have no CLIENTs. This is an 1:N, M-O (same as O-M, but seen reversed) relationship.

This is a 1:N strong entity relationship. The relationship can be represented by placing the primary key of AGENT in CLIENT as a foreign key.

6.21 Describe how to represent a N:M strong entity relationship. Give an example other than one in this chapter.

An N:M strong entity relationship can be represented by placing the primary key of each of the entities into a separate table, thus forming two 1:N relationships. The new table is called an intersection table. It will have a composite primary key consisting of the two foreign keys in each row.

In the Real Estate Agency, each CLIENT may be interested in many PROPERTYs, and each PROPERTY may be shown to many CLIENTS. However, CLIENTs may be seeing AGENTs without currently being interested in specific PROPERTY, and a PROPERTY may be listed without any CLIENT currently being interested in it. This is an N:M, O-O relationship.

This is a N:M strong entity relationship. The relationship can be represented by:

(1)
Placing the primary key of CLIENT in CLIENT_PROPERTY_INT as a foreign key, and

(2)
Placing the primary key of PROPERTY in CLIENT_PROPERTY_INT as a foreign key.

6.22 What is an intersection table? Why is it necessary?

An intersection table is a table that stores the foreign key combinations that link two entities in a N:M strong entity relationship. It contains only the two columns holding the foreign keys, and it has a composite primary key consisting of both of the foreign keys.

It is necessary because there is no logical place for the foreign keys in either of the original two entities.

