Name ____________________________ November 15, 2007

In the box below is a screen capture of the code we were working on in class to reverse the third and fifth elements of a list. I have numbered the lines so I can refer to them

Line 8 appears to produce the list items in the correct order but has an extra set of parentheses.

	1> (setq sentence (read))

 (this list is even longer than the list before)

(THIS LIST IS EVEN LONGER THAN THE LIST BEFORE)

2> (setq one (car sentence))

THIS

3> (setq two (car (cdr sentence))

)

LIST

4> (setq three (car (cdr (cdr sentence))))

IS

5> (setq four (car (cdr (cdr (cdr sentence)))))

EVEN

6> (setq five (car (cdr (cdr (cdr (cdr sentence))))))

LONGER

7> (setq six (cdr (cdr (cdr (cdr (cdr sentence))))))

(THAN THE LIST BEFORE)

8> (append (list one two) (cons five (cons four (list three six))))

(THIS LIST LONGER EVEN IS (THAN THE LIST BEFORE))

What should line 8 have been to produce the correct result?

	(append (list one two) (cons five (cons four (cons three six))))

(append (list one two) (cons five (cons four (append (list three) six))))
(append (list one two five four three) six)

What is the result of each of the following LISP function calls?

	(CDR (CAR '((a b) (c d e))))

	(b)

	(APPEND '(a) '(b c d))

	(a b c d)

	(* 2 3 (+ 4 5))

	54

	(< 17 7)_

	nil

	(ROUND 4.2)

	4
+0.2

Write your own LISP function to compute the seven times a number + 17
	(defun sevenTimes (p)
 (+ (* 7 p) 17))

