Pascal Lecture notes – Adams

INPUT statements
READ (X); (* is equivalent to saying *) READ (input, X);

READLN (X) (* is equivalent to saying *) READLN (input, X);

READ (file, X) (* means read from the file known as file *)
· The difference between read and readln is that readln goes to the next line after it executes where as read stops where it is
OUTPUT statements
WRITE (X); (* is equivalent to saying *) WRITE (output, X);
WRITELN (X); (* is equivalent to saying *) WRITELN (output, X);
· Write and writeln can also be used with files.

· The difference between write and writeln is that writeln moves the print head to the next line after it executes and write stops where it is.
NOTE: you will need to distinguish between the internal and the external file names. The one used in the READ, READLN, WRITE, and WRITELN statements is the internal name (variable name) not the diskfile (string) name.
ITERATION statements
FOR loop is a counted loop. It executes a fixed number of times
 FOR loopControlVariable := intialValue TO endingValue DO

 SingleStatement;

 FOR loopControlVariable := intialValue TO endingValue DO

 BEGIN MultipleStatements;

 END;
FOR loopControlVariable := initialValue DOWNTO endingValue DO
 SingleStatement;

WHILE loop is executes until a condition is met. It will not be executed at all if the condition is not true on entry to the loop. (Pre-test loop)
 WHILE (true) DO

 Do this one thing;

 WHILE (true) DO

 BEGIN
 END;
(* the begin end pair of reserved words makes a group of statements equivalent syntactically to a single statement *)
REPEAT … UNTIL loop executes until a condition is met. It always executes at least once because it’s a post test loop.
ASSIGNMENT statement

x:=y;
NOTE: in Pascal, the semi-colon is a statement separator not a statement terminator.

SELECTION statements
IF (condition) THEN
 singleThingToDo;

IF (condition) THEN

 BEGIN

 multipleThingsToDo

 END;

IF statements can be nested.
IF (condition) THEN

 singleThingToDo (* NEVER EVER A SEMICOLON BEFORE AN ELSE *)

ELSE

 singleThingToDo;

CASE is a multi-alternative selection statement
CASE identifier OF

Value : action; (* action can be single or multiple statements *)
Value2 : action2;

Value3..Value5 : action3;

Value4, value7, value12 : action4;

END; (* of case statement *)
Things beyond the 5 basic statements

It’s useful to know how to comment in a language

(* *) shows the delimiters for Pascal comments

{ }

Pascal is NOT case sensitive

Pascal only guarantees identifiers are unique if they are different from all other identifiers in the first 8 characters

Pascal has both reserved words (35 or 36) and predefined terms

Syntax

File handling: UseFiles2.pas

Sub-programs

Procedures

 Functions
Parameter Passing modes

Var parameters - pass by address (reference)

Value parameters
- copy a value in

Data types

Below is a diagram of the data types in the Ada programming language which clarifies the distinction between composite and non-composite data types. It matches Pascal better than it did FORTRAN but still is not identical. Ada's access types are Pascal's pointers. See the discussion of types at TaoYue.com in his excellent Learn Pascal Tutorial
[image: image1.png]Ada data types

™

/amrmc /composue\
/SCHQ arrdy record
/mscrﬂe\ :

enumefation integer floating point fixed point

N N/

character wide character wide wide character Boolean signed modular binary decimal

